8 research outputs found
Fiber-optic lossy mode resonance sensors
In the last 4 years, experimental evidences about the potential use of optical sensors based on Lossy Mode Resonances (LMR) have been presented in the literature. These LMR sensors have some similarities with Surface Plasmon Resonance (SPR) sensors, the gold standard in label-free, real-time biomolecular interaction analysis. In these new LMR sensors, if the non-metallic nanocladding of an optical waveguide fulfills the conditions explained in this work, coupling of light to the cladding modes happens at certain resonance wavelengths, which enables the use of LMR devices as refractometers and opens the door to diverse applications such as in biology and proteomics research. These highly sensitive refractometers have already shown sensitivities higher than 20,000 nm/RIU or 5x10-7 RIU and, given the youth of this field, it is expected to achieve even better values
Optical sensors based on lossy-mode resonances
Lossy-mode resonance (LMR)–based optical sensing technology has emerged in the last two decades as a nanotechnological platform with very interesting and promising properties. LMR complements the metallic materials typically used in surface plasmon resonance (SPR)–based sensors, with metallic oxides and polymers. In addition, it enables one to tune the position of the resonance in the optical spectrum, to excite the resonance with both transverse electric (TE) and transverse magnetic (TM) polarized light, and to generate multiple resonances. The domains of application are numerous: as sensors for detection of refractive indices voltage, pH, humidity, chemical species, and antigens, as well as biosensors. This review will discuss the bases of this relatively new technology and will show the main contributions that have permitted the optimization of its performance to the point that the question arises as to whether LMR–based optical sensors could become the sensing platform of the near future
Sensors Based on Thin-Film Coated Cladding Removed Multimode Optical Fiber and Single-Mode Multimode Single-Mode Fiber: A Comparative Study
Two simple optical fibre structures that do not require the inscription of a grating, a cladding removed multimode optical fibre (CRMOF) and a single-mode multimode single-mode structure (SMS), are compared in terms of their adequateness for sensing once they are coated with thin-films. The thin-film deposited (TiO2/PSS) permits increasing the sensitivity to surrounding medium refractive index. The results obtained can be extrapolated to other fields such as biological or chemical sensing just by replacing the thin-film by a specific material
Visualization 1: Sensitivity optimization with cladding-etched long period fiber gratings at the dispersion turning point
Etching process of LPFG1 (LP0,6 DTP) Originally published in Optics Express on 08 August 2016 (oe-24-16-17680
Single-mode—multimode—single-mode and lossy mode resonance-based devices:a comparative study for sensing applications
In this work, a thin-film consisting of 15 bilayers (estimated thickness: 210 nm) of titanium (IV) oxide and poly(sodium 4-styrenesulfonate) is simultaneously deposited onto two optical fiber structures: a single-mode—multimode—single-mode (SMS) device and a lossy mode resonance (LMR)-based device. The performance of both structures, as refractometers and relative humidity sensors, is studied and compared. In both cases, the sensitivity of the LMR-based device (955 nm/RIU and 3.54 nm/RH %, respectively) highly improves the one of the SMS (142 nm/RIU and 0.3 nm/RH %). These facts can be taken into account when developing sensors based on either SMS or LMR technologies
Micro and Nanostructured Materials for the Development of Optical Fibre Sensors
The measurement of chemical and biomedical parameters can take advantage of the features exclusively offered by optical fibre: passive nature, electromagnetic immunity and chemical stability are some of the most relevant ones. The small dimensions of the fibre generally require that the sensing material be loaded into a supporting matrix whose morphology is adjusted at a nanometric scale. Thanks to the advances in nanotechnology new deposition methods have been developed: they allow reagents from different chemical nature to be embedded into films with a thickness always below a few microns that also show a relevant aspect ratio to ensure a high transduction interface. This review reveals some of the main techniques that are currently been employed to develop this kind of sensors, describing in detail both the resulting supporting matrices as well as the sensing materials used. The main objective is to offer a general view of the state of the art to expose the main challenges and chances that this technology is facing currently