15 research outputs found
Simultaneous pressure-volume measurements using optical sensors and MRI 1 for left ventricle function assessment during animal experiment 2
International audienceSimultaneous pressure and volume measurements enable the extraction of valuable parameters for left ventricle function assessment. Cardiac MR has proven to be the most accurate method for volume estimation. Nonetheless, measuring pressure simultaneously during MRI acquisitions remains a challenge given the magnetic nature of the widely used pressure transducers. In this study we show the feasibility of simultaneous in vivo pressure-volume acquisitions with MRI using optical pressure sensors. Pressure-volume loops were calculated while inducing three inotropic states in a sheep and functional indices were extracted, using single beat loops, to characterize systolic and diastolic performance. Functional indices evolved as expected in response to positive inotropic stimuli. The end-systolic elastance, representing the contractility index, the diastolic myocardium compliance, and the cardiac work efficiency all increased when inducing inotropic state enhancement. The association of MRI and optical pressure sensors within the left ventricle successfully enabled pressure-volume loop analysis after having respective data simultaneously recorded during the experimentation without the need to move the animal between each inotropic state
Impact of an External Magnetic Field on the Shear Stresses Exerted by Blood Flowing in a Large Vessel
International audienceThe aim of this paper is to provide an advanced analysis of the shear stresses exerted on vessel walls by the flowing blood, when a limb or the whole body, or a vessel prosthesis, a scaffold… is placed in an external static magnetic field B 0. This type of situation could occur in several biomedical applications, such as magnetic resonance imaging (MRI), magnetic drug transport and targeting, tissue engineering, mechanotransduction studies… Since blood is a conducting fluid, its charged particles are deviated by the Hall effect, and the equations of motion include the Lorentz force. Consequently, the velocity profile is no longer axisymmetric, and the velocity gradients at the wall vary all around the vessel. To illustrate this idea, we expand the exact solution given by Gold (1962) for the stationary flow of blood in a rigid vessel with an insulating wall in the presence of an external static magnetic field: the analytical expressions for the velocity gradients are provided and evaluated near the wall. We demonstrate that the derivative of the longitudinal velocity with respect to the radial coordinate is preponderant when compared to the θ-derivative, and that elevated values of B 0 would be required to induce some noteworthy influence on the shear stresses at the vessel wall
Non-axisymétrie de l'écoulement du sang en présence d'un champ magnétique externe: conséquences pour le calcul des contraintes de cisaillement à la paroi du vaisseau
International audienc
Apport de la transformation en ondelettes pour le déclenchement cardio-respiratoire en IRM
International audienc
Stationary Flow of Blood in a Rigid Vessel in the Presence of an External Magnetic Field: Considerations about the Forces and Wall Shear Stresses Keywords Magnetohydrodynamic Flow of Blood, Wall Shear Stresses, Magnetic Field in Biomedical Applications
Abstract The magnetohydrodynamics laws govern the motion of a conducting fluid, such as blood, in an externally applied static magnetic field B 0 . When an artery is exposed to a magnetic field, the blood charged particles are deviated by the Lorentz force thus inducing electrical currents and voltages along the vessel walls and in the neighboring tissues. Such a situation may occur in several biomedical applications: magnetic resonance imaging (MRI), magnetic drug transport and targeting, tissue engineering… In this paper, we consider the steady unidirectional blood flow in a straight circular rigid vessel with non-conducting walls, in the presence of an exterior static magnetic field. The exact solution of Gold (1962) (with the induced fields not neglected) is revisited. It is shown that the integration over a cross section of the vessel of the longitudinal projection of the Lorentz force is zero, and that this result is related to the existence of current return paths, whose contributions compensate each other over the section. It is also demonstrated that the classical definition of the shear stresses cannot apply in this situation of magnetohydrodynamic flow, because, due to the existence of the Lorentz force, the axisymmetry is broken
Modelisation of blood flow in the presence of an external magnetic field
International audienc
Stationary Flow of Blood in a Rigid Vessel in the Presence of an External Magnetic Field: Considerations about the Forces and Wall Shear Stresses
International audienceThe magnetohydrodynamics laws govern the motion of a conducting fluid, such as blood, in an externally applied static magnetic field B 0. When an artery is exposed to a magnetic field, the blood charged particles are deviated by the Lorentz force thus inducing electrical currents and voltages along the vessel walls and in the neighboring tissues. Such a situation may occur in several bio-medical applications: magnetic resonance imaging (MRI), magnetic drug transport and targeting, tissue engineering… In this paper, we consider the steady unidirectional blood flow in a straight circular rigid vessel with non-conducting walls, in the presence of an exterior static magnetic field. The exact solution of Gold (1962) (with the induced fields not neglected) is revisited. It is shown that the integration over a cross section of the vessel of the longitudinal projection of the Lorentz force is zero, and that this result is related to the existence of current return paths, whose contributions compensate each other over the section. It is also demonstrated that the classical definition of the shear stresses cannot apply in this situation of magnetohydrodynamic flow, because, due to the existence of the Lorentz force, the axisymmetry is broken
Effects of static magnetic field exposure on blood flow
International audienc
Propagation de l'onde de pression dans un conduit déformable en présence d'un champ magnétique externe
International audienc