25 research outputs found
ISARIC-COVID-19 dataset: A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19
publishedVersio
Neurological manifestations of COVID-19 in adults and children
Different neurological manifestations of coronavirus disease 2019 (COVID-19) in adults and children and their impact have not been well characterized. We aimed to determine the prevalence of neurological manifestations and in-hospital complications among hospitalized COVID-19 patients and ascertain differences between adults and children. We conducted a prospective multicentre observational study using the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) cohort across 1507 sites worldwide from 30 January 2020 to 25 May 2021. Analyses of neurological manifestations and neurological complications considered unadjusted prevalence estimates for predefined patient subgroups, and adjusted estimates as a function of patient age and time of hospitalization using generalized linear models.
Overall, 161 239 patients (158 267 adults; 2972 children) hospitalized with COVID-19 and assessed for neurological manifestations and complications were included. In adults and children, the most frequent neurological manifestations at admission were fatigue (adults: 37.4%; children: 20.4%), altered consciousness (20.9%; 6.8%), myalgia (16.9%; 7.6%), dysgeusia (7.4%; 1.9%), anosmia (6.0%; 2.2%) and seizure (1.1%; 5.2%). In adults, the most frequent in-hospital neurological complications were stroke (1.5%), seizure (1%) and CNS infection (0.2%). Each occurred more frequently in intensive care unit (ICU) than in non-ICU patients. In children, seizure was the only neurological complication to occur more frequently in ICU versus non-ICU (7.1% versus 2.3%, P < 0.001).
Stroke prevalence increased with increasing age, while CNS infection and seizure steadily decreased with age. There was a dramatic decrease in stroke over time during the pandemic. Hypertension, chronic neurological disease and the use of extracorporeal membrane oxygenation were associated with increased risk of stroke. Altered consciousness was associated with CNS infection, seizure and stroke. All in-hospital neurological complications were associated with increased odds of death. The likelihood of death rose with increasing age, especially after 25 years of age.
In conclusion, adults and children have different neurological manifestations and in-hospital complications associated with COVID-19. Stroke risk increased with increasing age, while CNS infection and seizure risk decreased with age
Association of body mass index with COVID-19 related in-hospital death
Background
Patients with extreme body mass indices (BMI) could have an increased risk of death while hospitalized for COVID-19.
Methods
The database of the International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) was used to assess the time to in-hospital death with competing-risks regression by sex and between the categories of BMI.
Results
Data from 12,137 patients (age 60.0 ± 16.2 years, 59% males, BMI 29.4 ± 6.9 kg/m2) of 48 countries were available. By univariate analysis, underweight patients had a higher risk of mortality than the other patients (sub-hazard ratio (SHR) 1.75 [1.44–2.14]). Mortality was lower in normal (SHR 0.69 [0.58–0.85]), overweight (SHR 0.53 [0.43–0.65]) and obese (SHR 0.55 [0.44–0.67]) than in underweight patients. Multivariable analysis (adjusted for age, chronic pulmonary disease, malignant neoplasia, type 2 diabetes) confirmed that in-hospital mortality of underweight patients was higher than overweight patients (females: SHR 0.63 [0.45–0.88] and males: 0.69 [0.51–0.94]).
Conclusion
Even though these findings do not imply changes in the medical care of hospitalized patients, they support the use of BMI category for the stratification of patients enrolled in interventional studies where mortality is recorded as an outcome
Association of Country Income Level With the Characteristics and Outcomes of Critically Ill Patients Hospitalized With Acute Kidney Injury and COVID-19
Introduction: Acute kidney injury (AKI) has been identified as one of the most common and significant problems in hospitalized patients with COVID-19. However, studies examining the relationship between COVID-19 and AKI in low- and low-middle income countries (LLMIC) are lacking. Given that AKI is known to carry a higher mortality rate in these countries, it is important to understand differences in this population. Methods: This prospective, observational study examines the AKI incidence and characteristics of 32,210 patients with COVID-19 from 49 countries across all income levels who were admitted to an intensive care unit during their hospital stay. Results: Among patients with COVID-19 admitted to the intensive care unit, AKI incidence was highest in patients in LLMIC, followed by patients in upper-middle income countries (UMIC) and high-income countries (HIC) (53%, 38%, and 30%, respectively), whereas dialysis rates were lowest among patients with AKI from LLMIC and highest among those from HIC (27% vs. 45%). Patients with AKI in LLMIC had the largest proportion of community-acquired AKI (CA-AKI) and highest rate of in-hospital death (79% vs. 54% in HIC and 66% in UMIC). The association between AKI, being from LLMIC and in-hospital death persisted even after adjusting for disease severity. Conclusions: AKI is a particularly devastating complication of COVID-19 among patients from poorer nations where the gaps in accessibility and quality of healthcare delivery have a major impact on patient outcomes
Thrombotic and hemorrhagic complications of COVID-19 in adults hospitalized in high-income countries compared with those in adults hospitalized in low- and middle-income countries in an international registry
Background: COVID-19 has been associated with a broad range of thromboembolic, ischemic, and hemorrhagic complications (coagulopathy complications). Most studies have focused on patients with severe disease from high-income countries (HICs). Objectives: The main aims were to compare the frequency of coagulopathy complications in developing countries (low- and middle-income countries [LMICs]) with those in HICs, delineate the frequency across a range of treatment levels, and determine associations with in-hospital mortality. Methods: Adult patients enrolled in an observational, multinational registry, the International Severe Acute Respiratory and Emerging Infections COVID-19 study, between January 1, 2020, and September 15, 2021, met inclusion criteria, including admission to a hospital for laboratory-confirmed, acute COVID-19 and data on complications and survival. The advanced-treatment cohort received care, such as admission to the intensive care unit, mechanical ventilation, or inotropes or vasopressors; the basic-treatment cohort did not receive any of these interventions. Results: The study population included 495,682 patients from 52 countries, with 63% from LMICs and 85% in the basic treatment cohort. The frequency of coagulopathy complications was higher in HICs (0.76%-3.4%) than in LMICs (0.09%-1.22%). Complications were more frequent in the advanced-treatment cohort than in the basic-treatment cohort. Coagulopathy complications were associated with increased in-hospital mortality (odds ratio, 1.58; 95% CI, 1.52-1.64). The increased mortality associated with these complications was higher in LMICs (58.5%) than in HICs (35.4%). After controlling for coagulopathy complications, treatment intensity, and multiple other factors, the mortality was higher among patients in LMICs than among patients in HICs (odds ratio, 1.45; 95% CI, 1.39-1.51). Conclusion: In a large, international registry of patients hospitalized for COVID-19, coagulopathy complications were more frequent in HICs than in LMICs (developing countries). Increased mortality associated with coagulopathy complications was of a greater magnitude among patients in LMICs. Additional research is needed regarding timely diagnosis of and intervention for coagulation derangements associated with COVID-19, particularly for limited-resource settings
Liver injury in hospitalized patients with COVID-19: An International observational cohort study: An International observational cohort study
Background Using a large dataset, we evaluated prevalence and severity of alterations in liver enzymes in COVID-19 and association with patient-centred outcomes. Methods We included hospitalized patients with confirmed or suspected SARS-CoV-2 infection from the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) database. Key exposure was baseline liver enzymes (AST, ALT, bilirubin). Patients were assigned Liver Injury Classification score based on 3 components of enzymes at admission: Normal; Stage I) Liver injury: any component between 1-3x upper limit of normal (ULN); Stage II) Severe liver injury: any component ≥3x ULN. Outcomes were hospital mortality, utilization of selected resources, complications, and durations of hospital and ICU stay. Analyses used logistic regression with associations expressed as adjusted odds ratios (OR) with 95% confidence intervals (CI). Results Of 17,531 included patients, 46.2% (8099) and 8.2% (1430) of patients had stage 1 and 2 liver injury respectively. Compared to normal, stages 1 and 2 were associated with higher odds of mortality (OR 1.53 [1.37-1.71]; OR 2.50 [2.10-2.96]), ICU admission (OR 1.63 [1.48-1.79]; OR 1.90 [1.62-2.23]), and invasive mechanical ventilation (OR 1.43 [1.27-1.70]; OR 1.95 (1.55-2.45). Stages 1 and 2 were also associated with higher odds of developing sepsis (OR 1.38 [1.27-1.50]; OR 1.46 [1.25-1.70]), acute kidney injury (OR 1.13 [1.00-1.27]; OR 1.59 [1.32-1.91]), and acute respiratory distress syndrome (OR 1.38 [1.22-1.55]; OR 1.80 [1.49-2.17]). Conclusions Liver enzyme abnormalities are common among COVID-19 patients and associated with worse outcomes
Optimising Clinical Epidemiology in Disease Outbreaks: Analysis of ISARIC-WHO COVID-19 Case Report Form Utilisation: Analysis of ISARIC-WHO COVID-19 Case Report Form Utilisation
Standardised forms for capturing clinical data promote consistency in data collection and analysis across research sites, enabling faster, higher-quality evidence generation. ISARIC and the World Health Organization have developed case report forms (CRFs) for the clinical characterisation of several infectious disease outbreaks. To improve the design and quality of future forms, we analysed the inclusion and completion rates of the 243 fields on the ISARIC-WHO COVID-19 CRF. Data from 42 diverse collaborations, covering 1886 hospitals and 950,064 patients, were analysed. A mean of 129.6 fields (53%) were included in the adapted CRFs implemented across the sites. Consistent patterns of field inclusion and completion aligned with globally recognised research priorities in outbreaks of novel infectious diseases. Outcome status was the most highly included (95.2%) and completed (89.8%) field, followed by admission demographics (79.1% and 91.6%), comorbidities (77.9% and 79.0%), signs and symptoms (68.9% and 78.4%), and vitals (70.3% and 69.1%). Mean field completion was higher in severe patients (70.2%) than in all patients (61.6%). The results reveal how clinical characterisation CRFs can be streamlined to reduce data collection time, including the modularisation of CRFs, to offer a choice of data volume collection and the separation of critical care interventions. This data-driven approach to designing CRFs enhances the efficiency of data collection to inform patient care and public health response
At-admission prediction of mortality and pulmonary embolism in an international cohort of hospitalised patients with COVID-19 using statistical and machine learning methods
By September 2022, more than 600 million cases of SARS-CoV-2 infection have been reported globally, resulting in over 6.5 million deaths. COVID-19 mortality risk estimators are often, however, developed with small unrepresentative samples and with methodological limitations. It is highly important to develop predictive tools for pulmonary embolism (PE) in COVID-19 patients as one of the most severe preventable complications of COVID-19. Early recognition can help provide life-saving targeted anti-coagulation therapy right at admission. Using a dataset of more than 800,000 COVID-19 patients from an international cohort, we propose a cost-sensitive gradient-boosted machine learning model that predicts occurrence of PE and death at admission. Logistic regression, Cox proportional hazards models, and Shapley values were used to identify key predictors for PE and death. Our prediction model had a test AUROC of 75.9% and 74.2%, and sensitivities of 67.5% and 72.7% for PE and all-cause mortality respectively on a highly diverse and held-out test set. The PE prediction model was also evaluated on patients in UK and Spain separately with test results of 74.5% AUROC, 63.5% sensitivity and 78.9% AUROC, 95.7% sensitivity. Age, sex, region of admission, comorbidities (chronic cardiac and pulmonary disease, dementia, diabetes, hypertension, cancer, obesity, smoking), and symptoms (any, confusion, chest pain, fatigue, headache, fever, muscle or joint pain, shortness of breath) were the most important clinical predictors at admission. Age, overall presence of symptoms, shortness of breath, and hypertension were found to be key predictors for PE using our extreme gradient boosted model. This analysis based on the, until now, largest global dataset for this set of problems can inform hospital prioritisation policy and guide long term clinical research and decision-making for COVID-19 patients globally. Our machine learning model developed from an international cohort can serve to better regulate hospital risk prioritisation of at-risk patients
Major adverse cardiovascular events (MACE) in patients with severe COVID-19 registered in the ISARIC WHO clinical characterization protocol: A prospective, multinational, observational study: A prospective, multinational, observational study
Purpose: To determine its cumulative incidence, identify the risk factors associated with Major Adverse Cardiovascular Events (MACE) development, and its impact clinical outcomes. Materials and methods: This multinational, multicentre, prospective cohort study from the ISARIC database. We used bivariate and multivariate logistic regressions to explore the risk factors related to MACE development and determine its impact on 28-day and 90-day mortality. Results: 49,479 patients were included. Most were male 63.5% (31,441/49,479) and from high-income countries (84.4% [42,774/49,479]); however, >6000 patients were registered in low-and-middle-income countries. MACE cumulative incidence during their hospital stay was 17.8% (8829/49,479). The main risk factors independently associated with the development of MACE were older age, chronic kidney disease or cardiovascular disease, smoking history, and requirement of vasopressors or invasive mechanical ventilation at admission. The overall 28-day and 90-day mortality were higher among patients who developed MACE than those who did not (63.1% [5573/8829] vs. 35.6% [14,487/40,650] p < 0.001; 69.9% [6169/8829] vs. 37.8% [15,372/40,650] p < 0.001, respectively). After adjusting for confounders, MACE remained independently associated with higher 28-day and 90-day mortality (Odds Ratio [95% CI], 1.36 [1.33–1.39];1.47 [1.43–1.50], respectively). Conclusions: Patients with severe COVID-19 frequently develop MACE, which is independently associated with worse clinical outcomes
ISARIC-COVID-19 dataset:A Prospective, Standardized, Global Dataset of Patients Hospitalized with COVID-19
The International Severe Acute Respiratory and Emerging Infection Consortium (ISARIC) COVID-19 dataset is one of the largest international databases of prospectively collected clinical data on people hospitalized with COVID-19. This dataset was compiled during the COVID-19 pandemic by a network of hospitals that collect data using the ISARIC-World Health Organization Clinical Characterization Protocol and data tools. The database includes data from more than 705,000 patients, collected in more than 60 countries and 1,500 centres worldwide. Patient data are available from acute hospital admissions with COVID-19 and outpatient follow-ups. The data include signs and symptoms, pre-existing comorbidities, vital signs, chronic and acute treatments, complications, dates of hospitalization and discharge, mortality, viral strains, vaccination status, and other data. Here, we present the dataset characteristics, explain its architecture and how to gain access, and provide tools to facilitate its use
