23 research outputs found
A Mathematical Framework for Agent Based Models of Complex Biological Networks
Agent-based modeling and simulation is a useful method to study biological
phenomena in a wide range of fields, from molecular biology to ecology. Since
there is currently no agreed-upon standard way to specify such models it is not
always easy to use published models. Also, since model descriptions are not
usually given in mathematical terms, it is difficult to bring mathematical
analysis tools to bear, so that models are typically studied through
simulation. In order to address this issue, Grimm et al. proposed a protocol
for model specification, the so-called ODD protocol, which provides a standard
way to describe models. This paper proposes an addition to the ODD protocol
which allows the description of an agent-based model as a dynamical system,
which provides access to computational and theoretical tools for its analysis.
The mathematical framework is that of algebraic models, that is, time-discrete
dynamical systems with algebraic structure. It is shown by way of several
examples how this mathematical specification can help with model analysis.Comment: To appear in Bulletin of Mathematical Biolog
Parameter estimation for Boolean models of biological networks
Boolean networks have long been used as models of molecular networks and play
an increasingly important role in systems biology. This paper describes a
software package, Polynome, offered as a web service, that helps users
construct Boolean network models based on experimental data and biological
input. The key feature is a discrete analog of parameter estimation for
continuous models. With only experimental data as input, the software can be
used as a tool for reverse-engineering of Boolean network models from
experimental time course data.Comment: Web interface of the software is available at
http://polymath.vbi.vt.edu/polynome
A Virtual Look at EpsteinâBarr Virus Infection: Biological Interpretations
The possibility of using computer simulation and mathematical modeling to gain insight into biological and other complex systems is receiving increased attention. However, it is as yet unclear to what extent these techniques will provide useful biological insights or even what the best approach is. EpsteinâBarr virus (EBV) provides a good candidate to address these issues. It persistently infects most humans and is associated with several important diseases. In addition, a detailed biological model has been developed that provides an intricate understanding of EBV infection in the naturally infected human host and accounts for most of the virus' diverse and peculiar properties. We have developed an agent-based computer model/simulation (PathSim, Pathogen Simulation) of this biological model. The simulation is performed on a virtual grid that represents the anatomy of the tonsils of the nasopharyngeal cavity (Waldeyer ring) and the peripheral circulationâthe sites of EBV infection and persistence. The simulation is presented via a user friendly visual interface and reproduces quantitative and qualitative aspects of acute and persistent EBV infection. The simulation also had predictive power in validation experiments involving certain aspects of viral infection dynamics. Moreover, it allows us to identify switch points in the infection process that direct the disease course towards the end points of persistence, clearance, or death. Lastly, we were able to identify parameter sets that reproduced aspects of EBV-associated diseases. These investigations indicate that such simulations, combined with laboratory and clinical studies and animal models, will provide a powerful approach to investigating and controlling EBV infection, including the design of targeted anti-viral therapies
Survey of CT radiation doses and iodinated contrast medium administration: an international multicentric study
ObjectiveTo assess the relationship between intravenous iodinated contrast media (ICM) administration usage and radiation doses for contrast-enhanced (CE) CT of head, chest, and abdomen-pelvis (AP) in international, multicenter settings. MethodsOur international (n = 16 countries), multicenter (n = 43 sites), and cross-sectional (ConRad) study had two parts. Part 1: Redcap survey with questions on information related to CT and ICM manufacturer/brand and respective protocols. Part 2: Information on 3,258 patients (18-96 years; M:F 1654:1604) who underwent CECT for a routine head (n = 456), chest (n = 528), AP (n = 599), head CT angiography (n = 539), pulmonary embolism (n = 599), and liver CT examinations (n = 537) at 43 sites across five continents. The following information was recorded: hospital name, patient age, gender, body mass index [BMI], clinical indications, scan parameters (number of scan phases, kV), IV-contrast information (concentration, volume, flow rate, and delay), and dose indices (CTDIvol and DLP). ResultsMost routine chest (58.4%) and AP (68.7%) CECT exams were performed with 2-4 scan phases with fixed scan delay (chest 71.4%; AP 79.8%, liver CECT 50.7%) following ICM administration. Most sites did not change kV across different patients and scan phases; most CECT protocols were performed at 120-140 kV (83%, 1979/2685). There were no significant differences between radiation doses for non-contrast (CTDIvol 24 [16-30] mGy; DLP 633 [414-702] mGycm) and post-contrast phases (22 [19-27] mGy; 648 [392-694] mGycm) (p = 0.142). Sites that used bolus tracking for chest and AP CECT had lower CTDIvol than sites with fixed scan delays (p < 0.001). There was no correlation between BMI and CTDIvol (r2 <= - 0.1 to 0.1, p = 0.931). ConclusionOur study demonstrates up to ten-fold variability in ICM injection protocols and radiation doses across different CT protocols. The study emphasizes the need for optimizing CT scanning and contrast protocols to reduce unnecessary contrast and radiation exposure to patients. Clinical relevance statementThe wide variability and lack of standardization of ICM media and radiation doses in CT protocols suggest the need for education and optimization of contrast usage and scan factors for optimizing image quality in CECT
The Inter-temporal relationship between Risk, Capital and Efficiency: The case of Islamic and conventional banks
The paper investigates the relationship between risk, capital and efficiency for Islamic and conventional banks using a dataset spanning 14 countries over the 2000-2012 period. We use the z-score as a proxy for insolvency risk, cost efficiency is estimated via a stochastic frontier approach and capitalisation is reflected on the equity to assets ratio. An array of bank-specific, macroeconomic and market structure variables are used in a system of three equations, estimated using the seemingly unrelated regression (SUR) technique. We find that the capitalisation response to increases in insolvency risk is more pronounced for Islamic banks but has an approximately five-times smaller effect on risk mitigation compared to conventional banks. Higher cost efficiency is related to lower risk for conventional banks, but the opposite is true for Islamic banks. The link between cost efficiency and capitalisation attests to a substitutional effect for the case of conventional banks, but a complementary effect for Islamic banks. Our findings give new insights on the use of efficiency to gauge capital requirements for financial institutions and are particularly relevant for regulators and policy makers in countries where both bank types operate