61 research outputs found

    Environmentally Friendly Process for Recovery of Wood Preservative from Used Copper Naphthenate-Treated Railroad Ties

    Get PDF
    © 2017 American Chemical Society. Removal of copper naphthenate (CN) from used wooden railroad ties was investigated to improve the commercial viability of this biomass as a fuel source and avoid alternative disposal methods such as landfilling. Bench-scale thermal desorption of organic preservative components from CN-impregnated ties was followed by extraction of the copper fraction with ethylenediaminetetraacetic acid, 1-hydroxy ethylidene-1,1-diphosphonic acid, or 2,6-pyridine dicarboxylic acid (PDA). Naphthenic acid (NA) and carrier oil were recovered at desorption temperatures between 225 and 300 °C and could potentially be recycled to treat new ties. The thermal treatment also mimicked torrefaction, improving the biomass properties for use as a thermochemical conversion feedstock. Chelation with PDA, a biodegradable chelating agent, after desorption had the highest extraction efficiency of copper and other naturally present inorganics, extracting 100% of the copper from both the raw and 225 °C-treated samples. Optimized desorbed material showed a 64% decrease in ash content when extracted with PDA; however, extraction efficiency decreased as desorption temperature increased, indicating that thermal treatment caused the inorganics to be less extractable. We concluded that the optimum desorption conditions were between 250 and 275 °C for 45 min followed by extraction with PDA when considering both NA removal and inorganic extraction efficiency

    Effects of temperature and equivalence ratio on mass balance and energy analysis in loblolly pine oxygen gasification

    No full text
    The purpose of this study was to evaluate the effects of temperature and equivalence ratios (ERs) on the distribution of products (primary gases carbon monoxide [CO], H2, CH4, CO2), gas phase contaminants (tar, NH3, HCN, H2S, HCl), char, carbon, and inorganics), and energy flows on an oxygen-blown bubbling fluidized bed gasifier system using loblolly pine. The goal and value of this study was to provide quantitative and qualitative performance analysis and data for process engineering and optimization of these fledgling biomass conversion systems. As temperature and ER increased, mass balance closures also increased from 94.73% to 96.72% for temperature and 89.82–96.93% for ER. In addition, the carbon closures ranged from 80.77% to 92.29% and from 79.09% to 87.13% as temperature and ER increased, respectively. Carbon conversion efficiency to gas product ranged from 72.26% to 84.32% as temperature increased and from 72.26% to 84.66% as ER increased. Carbon flow analysis showed that the char product streams retained 10.26–6.94% and 8.82–2.13% of the carbon fed to the gasifier as temperature and ER increased, respectively. The carbon content in the liquid condensate was minimal compared to the carbon in other product streams and accounted for less than 0.1% of the carbon input to the gasifier at all conditions. The cold and hot gas efficiencies increased from 56.12% to 67.45% and from 67.51% to 83.83% as temperature increased due to higher production of CO and hydrogen (H2). In contrast, cold and hot gas efficiencies decreased from 63.85% to 52.84% and from 78.06% to 73.00% as ER increased, respectively, due to enhanced oxidation of gas products resulting in a net decrease in heating value

    Synthesis and evaluation of layered double hydroxide based sorbent for hot gas cleanup of hydrogen chloride

    No full text
    In this study, we report on the synthesis and evaluation of a sodium, magnesium, and aluminum (Na-Mg-Al) layered double hydroxide (LDH) based sorbent for hydrogen chloride (HCl) removal at concentrations found in lignocellulosic biomass derived syngas. The LDH was synthesized by a spontaneous self-assembly method and further calcined at 700 °C to produce a mixed metal oxide sorbent that we evaluated in the hot gas cleanup of hydrogen chloride at 100 parts per million. The performance of this sorbent was evaluated in a fixed bed reactor from 400 to 600 °C against that of a commercial magnesium and aluminum LDH (ComLDH) material that does not contain sodium in the matrix as well as two other commercial sorbents, sodium carbonate (Na2CO3) and sodium aluminate (NaAlO2).Our Na-Mg-Al LDH is thermally stable in the hot gas cleanup temperature range. During fixed bed experiments, our calcined LDH mixed metal oxide was effective in reducing hydrogen chloride’s concentration below the breakthrough concentration of 1 ppm from 400 to 600 °C for more than 14 h. The better performance of our calcined LDH compared to calcined commercial LDH supported our hypothesis that sodium incorporation in the LDH matrix enhances HCl sorption. Based on comparison against the commercial Na-based sorbents, the following rankings by temperature observed: LDH > NaAlO2 > Na2CO3 at 400 °C; LDH = NaAlO2 > Na2CO3 at 500 °C; and Na2CO3 = NaAlO2 = LDH at 600 °C

    Co-application of biochar and nitrogen fertilizer reduced nitrogen losses from soil.

    No full text
    Combined application of biochar and nitrogen (N) fertilizer has the potential to reduce N losses from soil. However, the effectiveness of biochar amendment on N management can vary with biochar types with different physical and chemical properties. This study aimed to assess the effect of two types of hardwood biochar with different ash contents and cation exchange capacity (CEC) on soil N mineralization and nitrous oxide (N2O) production when applied alone and in combination with N fertilizer. Soil samples collected from a temperate pasture system were amended with two types of biochar (B1 and B2), urea, and urea plus biochar, and incubated for 60 days along with soil control (without biochar or urea addition). Soil nitrate N, ammonium N, ammonia-oxidizing bacteria amoA gene transcripts, and N2O production were measured during the experiment. Compared to control, addition of B1 (higher CEC and lower ash content) alone decreased nitrate N concentration by 21% to 45% during the incubation period while the addition of B2 (lower CEC and higher ash content) alone increased the nitrate N concentration during the first 10 days. Biochar B1 also reduced the abundance of amoA transcripts by 71% after 60 days. Compared to B1 + urea, B2 + urea resulted in a significantly greater initial increase in soil ammonium and nitrate N concentrations. However, B2 + urea had a significantly lower 60-day cumulative N2O emission compared to B1 + urea. Overall, when applied with urea, the biochar with higher CEC reduced ammonification and nitrification rates, while biochar with higher ash content reduced N N2O production. Our study demonstrated that biochar has the potential to enhance N retention in soil and reduce N2O emission when it is applied with urea, but the specific effects of the added biochar depend on its physical and chemical properties
    • …
    corecore