8 research outputs found

    Poly(lactic acid)/Polycaprolactone/Graphene Bionanocomposites: Microstructural, Mechanical and Thermal Properties

    Get PDF
    Hypothesis: Among the types of bioplastics, poly(lactic acid) (PLA) has the ability to compete with petroleum-based polymers due to its favorable properties such as high tensile strength and high modulus of elasticity. Brittleness is the main disadvantage of PLA which limits its practical applications in some industrial fields like packaging and textile. Blending of PLA with other flexible bioplastics like polycaprolactone (PCL) and adding nanoparticles like graphene into PLA are among the techniques that can be used to balance the stiffness and toughness of PLA.Methods: Nanocomposites based on PLA/PCL/graphene (G) were prepared by melt mixing using an internal mixer with direct feeding method. In all samples the weight ratio of PCL dispersed phase to PLA matrix phase was 30:70, and three different weight percentages of nanographene (0.5, 1 and 2) were used. A rheometric mechanical spectrometer (RMS), X-ray diffractometer (XRD), and a scanning electron microscopy (SEM), as well as tensile and differential scanning calorimetry (DSC) measurements were used to study the microstructure, morphology, mechanical and thermal properties, respectively.Findings: The results of XRD showed that graphene nanoparticles are well dispersed in the polymer matrix. The SEM results demonstrated that incorporation of graphene nanoparticles into the PLA/PCL sample led to a decrease in the PCL droplet size. The melt linear viscoelastic measurements showed that incorporation of 2% (by wt) of nanographene into PLA/PCL sample enhanced the storage modulus and complex viscosity by about 200 and 400% due to well-dispersion of nanoparticles in the matrix that led to the formation of a 3D network between nanographene and/or nanographene-polymer chains. The tensile test results showed that the elastic modulus tensile strength, and elongation-at-break increased by 126.63%, 80.48%, and 97.36% respectively, by adding 2% graphene nanoparticles to the PLA/PCL sample. The results of the thermal tests also showed that the addition of nanographene and PCL to the PLA polymer causes the nucleation effect and the creation of active nucleation centers, and the crystallinity percentage of the PLA phase increases, but the effect of PCL in this research was more evident than that of nanographene

    Caspofungin Increases Fungal Chitin and Eosinophil and γδ T Cell-Dependent Pathology in Invasive Aspergillosis

    Get PDF
    The polysaccharide-rich fungal cell wall provides pathogen-specific targets for antifungal therapy and distinct molecular patterns that stimulate protective or detrimental host immunity. The echinocandin antifungal caspofungin inhibits synthesis of cell wall β-1,3-glucan and is used for prophylactic therapy in immune-suppressed individuals. However, breakthrough infections with fungal pathogen Aspergillus fumigatus are associated with caspofungin prophylaxis. In this study, we report in vitro and in vivo increases in fungal surface chitin in A. fumigatus induced by caspofungin that was associated with airway eosinophil recruitment in neutropenic mice with invasive pulmonary aspergillosis (IA). More importantly, caspofungin treatment of mice with IA resulted in a pattern of increased fungal burden and severity of disease that was reversed in eosinophil-deficient mice. Additionally, the eosinophil granule proteins major basic protein and eosinophil peroxidase were more frequently detected in the bronchoalveolar lavage fluid of lung transplant patients diagnosed with IA that received caspofungin therapy when compared with azole-treated patients. Eosinophil recruitment and inhibition of fungal clearance in caspofungin-treated mice with IA required RAG1 expression and γδ T cells. These results identify an eosinophil-mediated mechanism for paradoxical caspofungin activity and support the future investigation of the potential of eosinophil or fungal chitin-targeted inhibition in the treatment of IA

    Fusarium: more than a node or a foot-shaped basal cell

    No full text
    Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid generaUCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias Básicas::Centro de Investigaciones en Productos Naturales (CIPRONA

    Assessment of occupational exposure to azole resistant fungi in 10 Portuguese bakeries

    No full text
    corecore