33 research outputs found

    Inter-Annual Variability and Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea over the Last 25 Years

    Full text link
    peer reviewedSea level and sea surface temperature inter-annual variability and trends in the Mediterranean Sea were investigated during the period 1993–2017. These were carried out using gridded absolute dynamic topography from satellite altimetry, tide gauge (TG) time series from 25 stations and gridded sea surface temperature (SST) from advanced very-high-resolution radiometer (AVHRR) data. The coastal TG data were used to verify the satellite derived sea level. Moreover, the contributions of atmospheric pressure and North Atlantic Oscillation (NAO) to sea level changes were also examined. The results revealed that the Mediterranean Sea exhibits inter-annual spatiotemporal coherent variability in both sea level and SST. The spatial variability in sea level is more significant over the Adriatic and Aegean Seas, most of the Levantine basin, and along the Tunisian shelf. Marked spatial variability in SST occurs over the central part of the Mediterranean Sea with maximum amplitude in the Tyrrhenian Sea. The highest temporal variability of sea level and SST was found in 2010 and 2003, respectively. The inter-annual variability of sea level and SST accounts for about 32% and 3% of the total variance of sea level and SST, respectively. An analysis of sea level anomaly reveled large negative values during the extended winter of 2011–2012, which may be attributed to the strong positive phase of NAO index. Satellite altimetry indicated a significant positive sea level trend of 2.7 ± 0.41 mm/year together with a significant warming of 0.036 ± 0.003 °C/year over the whole Mediterranean Sea for the period 1993–2017

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Spectroscopic Assessment of Platinum Group Elements of PM10 Particles Sampled in Three Different Areas in Jeddah, Saudi Arabia

    No full text
    Platinum group elements (PGE) including Ru, Rh, Pt and Pd have been quantified in air particulate matter with an aerodynamic diameter equal or less than 10 microns (PM10) using inductively coupled plasma mass spectrometry (ICP-MS). PM10 aerosols have been collected from three sites representing various activities in Jeddah city, Saudi Arabia. These locations are residential site with heavy traffic, industrial site and heavy traffic and a light traffic site outside the city. To obtain reasonable data of the PGE concentrations, a group from 10 to 15 PM10 samples were collected every month. The annual and seasonal variation of the mass concentration of the PGE were demonstrated. In all locations, Pt and Pd were relatively higher than Ru and Rh possibly because their main use is in automobile catalytic converters. Concentrations of observed PGE in PM10 could be arranged in ascending order as: Rh < Ru < Pd < Pt. In case of Ru and Pt, there are clear similarities in terms of the overall mean concentrations at the sampling locations. Due to the high concentration of Ru, Rh and Pd at low traffic site, there are certainly other sources of these elements rather than vehicle catalytic converters. However, at the industrial/heavy traffic location, high concentrations of Ru were detected during February 2015. In addition, high Pt concentrations were also detected at the light traffic site during May 2015. Results indicate that Pt source in PM10 is mainly the automobile catalytic converters

    Influence of Niobium Pentoxide particulates on the properties of Brushite/Gelatin/Alginate membranes

    No full text
    Novel non-porous membranes were prepared by impregnating of nano-brushite and niobium pentoxide (Nb2O5) into a gelatin/alginate matrix. The physicochemical properties, morphology and mechanical properties of the prepared membranes were characterized using XRD, FTIR, SEM, TEM and universal testing machine, respectively. Swelling ability of the prepared membranes was determined in distilled water. The surfaces of the membranes were characterized by means of FTIR and SEM coupled with EDX after submersion in simulated body fluid (SBF) up to 15 days. Moreover, the calcium and phosphorus ion concentrations in the SBF were measured by UV-spectrophotometer. The in vitro drug release and the release mechanism of a model antibiotic, namely, ciprofloxacin (CFX), were tested in phosphate buffer saline (PBS) for 15 days. The antibacterial activities of the CFX-loaded membranes were tested against known microorganisms. The physicochemical properties, morphology, mechanical properties and swelling ability of the prepared membranes were found to be dependent on the presence of Nb2O5 allowing control of their properties. For example, the Nb2O5-loaded membranes exhibited a higher in vitro bioactivity and slower drug release compared to those of Nb2O5-free membranes. The CFX-loaded membranes also exhibited an excellent inhibition zones against the selected microorganisms. Overall, the prepared membranes have been found to be very promising for use in bone substitute’s applications
    corecore