15 research outputs found

    Analysis of Sample Correlations for Monte Carlo Rendering

    Get PDF
    Modern physically based rendering techniques critically depend on approximating integrals of high dimensional functions representing radiant light energy. Monte Carlo based integrators are the choice for complex scenes and effects. These integrators work by sampling the integrand at sample point locations. The distribution of these sample points determines convergence rates and noise in the final renderings. The characteristics of such distributions can be uniquely represented in terms of correlations of sampling point locations. Hence, it is essential to study these correlations to understand and adapt sample distributions for low error in integral approximation. In this work, we aim at providing a comprehensive and accessible overview of the techniques developed over the last decades to analyze such correlations, relate them to error in integrators, and understand when and how to use existing sampling algorithms for effective rendering workflows.publishe

    A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13  TeV

    Get PDF
    A search for new light bosons decaying into muon pairs is presented using a data sample corresponding to an integrated luminosity of 35.9fb−1 of proton-proton collisions at a center-of-mass energy √s=13TeV, collected with the CMS detector at the CERN LHC. The search is model independent, only requiring the pair production of a new light boson and its subsequent decay to a pair of muons. No significant deviation from the predicted background is observed. A model independent limit is set on the product of the production cross section times branching fraction to dimuons squared times acceptance as a function of new light boson mass. This limit varies between 0.15 and 0.39 fb over a range of new light boson masses from 0.25 to 8.5 GeV. It is then interpreted in the context of the next-to-minimal supersymmetric standard model and a dark supersymmetry model that allows for nonnegligible light boson lifetimes. In both cases, there is significant improvement over previously published limits

    Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two τ leptons in proton–proton collisions at √s = 13 TeV

    Get PDF

    Measurement of the single top quark and antiquark production cross sections in the t channel and their ratio in proton-proton collisions at √s = 13 TeV

    Get PDF

    Tuti Weaving

    No full text
    We present a new idea for the algorithmic design of weaving patterns that is based on AA Outlines. The method takes advantage of their inherent property of having only a few distinct rows and columns. In contrast to a prior Bridges paper, we describe a new approach for extracting weaving patterns from AA Outlines, and we add colors of yarns as a design parameter. The resulting patterns can be non-periodic, are free of long floats, and can be woven in looms with only two shafts.publishe

    AA patterns for point sets with controlled spectral properties

    No full text
    We describe a novel technique for the fast production of large point sets with different spectral properties. In contrast to tile-based methods we use so-called AA Patterns: ornamental point sets obtained from quantization errors. These patterns have a discrete and structured number-theoretic nature, can be produced at very low costs, and possess an inherent structural indexing mechanism equivalent to those used in recursive tiling techniques. This allows us to generate, manipulate and store point sets very efficiently. The technique outperforms existing methods in speed, memory footprint, quality, and flexibility. This is demonstrated by a number of measurements and comparisons to existing point generation algorithms.publishe

    Low-discrepancy blue noise sampling

    No full text
    We present a novel technique that produces two-dimensional low- discrepancy (LD) blue noise point sets for sampling. Using one- dimensional binary van der Corput sequences, we construct two- dimensional LD point sets, and rearrange them to match a target spectral profile while preserving their low discrepancy. We store the rearrangement information in a compact lookup table that can be used to produce arbitrarily large point sets. We evaluate our tech- nique and compare it to the state-of-the-art sampling approaches.publishe

    A search for pair production of new light bosons decaying into muons in proton-proton collisions at 13  TeV

    Get PDF
    A search for new light bosons decaying into muon pairs is presented using a data sample corresponding to an integrated luminosity of 35.9fb−1 of proton-proton collisions at a center-of-mass energy √s=13TeV, collected with the CMS detector at the CERN LHC. The search is model independent, only requiring the pair production of a new light boson and its subsequent decay to a pair of muons. No significant deviation from the predicted background is observed. A model independent limit is set on the product of the production cross section times branching fraction to dimuons squared times acceptance as a function of new light boson mass. This limit varies between 0.15 and 0.39 fb over a range of new light boson masses from 0.25 to 8.5 GeV. It is then interpreted in the context of the next-to-minimal supersymmetric standard model and a dark supersymmetry model that allows for nonnegligible light boson lifetimes. In both cases, there is significant improvement over previously published limits
    corecore