201 research outputs found

    Gravitational Waves in a Spatially Closed deSitter Spacetime

    Full text link
    Perturbation of gravitational fields may be decomposed into scalar,vector and tensor components.In this paper we concern with the evolution of tensor mode perturbations in a spatially closed deSitter background of RW form. It may be thought as gravitional waves in a classical description. The chosen background has the advantage of to be maximally extended and symmetric. The spatially flat models commonly emerge from inflationary scenarios are not completely extended.We first derive the general weak field equations.Then the form of the field equations in two special cases, planar and spherical waves are obtained and their solutions are presented. We conclued with discussing the significance of the results and their implications.Comment: 16 pages,no figure

    Convergence of vector bundles with metrics of Sasaki-type

    Full text link
    If a sequence of Riemannian manifolds, XiX_i, converges in the pointed Gromov-Hausdorff sense to a limit space, XX_\infty, and if EiE_i are vector bundles over XiX_i endowed with metrics of Sasaki-type with a uniform upper bound on rank, then a subsequence of the EiE_i converges in the pointed Gromov-Hausdorff sense to a metric space, EE_\infty. The projection maps πi\pi_i converge to a limit submetry π\pi_\infty and the fibers converge to its fibers; the latter may no longer be vector spaces but are homeomorphic to Rk/G\R^k/G, where GG is a closed subgroup of O(k)O(k) ---called the {\em wane group}--- that depends on the basepoint and that is defined using the holonomy groups on the vector bundles. The norms μi=i\mu_i=\|\cdot\|_i converges to a map μ\mu_{\infty} compatible with the re-scaling in Rk/G\R^k/G and the R\R-action on EiE_i converges to an R\R-action on EE_{\infty} compatible with the limiting norm. In the special case when the sequence of vector bundles has a uniform lower bound on holonomy radius (as in a sequence of collapsing flat tori to a circle), the limit fibers are vector spaces. Under the opposite extreme, e.g. when a single compact nn-dimensional manifold is re-scaled to a point, the limit fiber is Rn/H\R^n/H where HH is the closure of the holonomy group of the compact manifold considered. An appropriate notion of parallelism is given to the limiting spaces by considering curves whose length is unchanged under the projection. The class of such curves is invariant under the R\R-action and each such curve preserves norms. The existence of parallel translation along rectifiable curves with arbitrary initial conditions is also exhibited. Uniqueness is not true in general, but a necessary condition is given in terms of the aforementioned wane groups GG.Comment: 44 pages, 1 figure, in V.2 added Theorem E and Section 4 on parallelism in the limit space

    Understanding resonant charge transport through weakly coupled single-molecule junctions

    Get PDF
    Off-resonant charge transport through molecular junctions has been extensively studied since the advent of single-molecule electronics and it is now well understood within the framework of the non-interacting Landauer approach. Conversely, gaining a qualitative and quantitative understanding of the resonant transport regime has proven more elusive. Here, we study resonant charge transport through graphene-based zinc-porphyrin junctions. We experimentally demonstrate an inadequacy of the non-interacting Landauer theory as well as the conventional single-mode Franck-Condon model. Instead, we model the overall charge transport as a sequence of non-adiabatic electron transfers, the rates of which depend on both outer and inner-sphere vibrational interactions. We show that the transport properties of our molecular junctions are determined by a combination of electron-electron and electron-vibrational coupling, and are sensitive to the interactions with the wider local environment. Furthermore, we assess the importance of nuclear tunnelling and examine the suitability of semi-classical Marcus theory as a description of charge transport in molecular devices.Comment: version accepted in Nature Communications; SI available at https://researchportal.hw.ac.uk/en/publications/understanding-resonant-charge-transport-through-weakly-coupled-s

    Staphylococcus aureus Isolates from Bovine Mastitis in Eight Countries: Genotypes, Detection of Genes Encoding Different Toxins and Other Virulence Genes

    Get PDF
    Staphylococcus aureus is recognized worldwide as one of the major agents of dairy cow intra-mammary infections. This microorganism can express a wide spectrum of pathogenic factors used to attach, colonize, invade and infect the host. The present study evaluated 120 isolates from eight different countries that were genotyped by RS-PCR and investigated for 26 different virulence factors to increase the knowledge on the circulating genetic lineages among the cow population with mastitis. New genotypes were observed for South African strains while for all the other countries new variants of existing genotypes were detected. For each country, a specific genotypic pattern was found. Among the virulence factors, fmtB, cna, clfA and leucocidins genes were the most frequent. The sea and sei genes were present in seven out of eight countries; seh showed high frequency in South American countries (Brazil, Colombia, Argentina), while sel was harboured especially in one Mediterranean country (Tunisia). The etb, seb and see genes were not detected in any of the isolates, while only two isolates were MRSA (Germany and Italy) confirming the low diffusion of methicillin resistance microorganism among bovine mastitis isolates. This work demonstrated the wide variety of S. aureus genotypes found in dairy cattle worldwide. This condition suggests that considering the region of interest might help to formulate strategies for reducing the infection spreading

    Institutional Herding in Financial Markets: New Evidence Through the Lens of a Simulated Model

    Full text link
    Due to data limitations and the absence of testable, model-based predictions, theory and evidence on herd behavior are only loosely connected. This paper contributes towards closing this gap in the herding literature. We use numerical simulations of a herd model to derive new, theory-based predictions for aggregate herding intensity. Using high-frequency, investor-specific trading data we confirm the predicted impact of information risk on herding. In contrast, the increase in buy herding measured for the financial crisis period cannot be explained by the herd model

    The importance of understanding individual differences in Down syndrome

    Get PDF
    In this article, we first present a summary of the general assumptions about Down syndrome (DS) still to be found in the literature. We go on to show how new research has modified these assumptions, pointing to a wide range of individual differences at every level of description. We argue that, in the context of significant increases in DS life expectancy, a focus on individual differences in trisomy 21 at all levels—genetic, cellular, neural, cognitive, behavioral, and environmental—constitutes one of the best approaches for understanding genotype/phenotype relations in DS and for exploring risk and protective factors for Alzheimer’s disease in this high-risk population

    Low incidence of SARS-CoV-2, risk factors of mortality and the course of illness in the French national cohort of dialysis patients

    Get PDF

    Understanding resonant charge transport through weakly coupled single-molecule junctions

    Get PDF
    Off-resonant charge transport through molecular junctions has been extensively studied since the advent of single-molecule electronics and it is now well understood within the framework of the non-interacting Landauer approach. Conversely, gaining a qualitative and quantitative understanding of the resonant transport regime has proven more elusive. Here, we study resonant charge transport through graphene-based zinc-porphyrin junctions. We experimentally demonstrate an inadequacy of the non-interacting Landauer theory as well as the conventional single-mode Franck-Condon model. Instead, we model the overall charge transport as a sequence of non-adiabatic electron transfers, the rates of which depend on both outer and inner-sphere vibrational interactions. We show that the transport properties of our molecular junctions are determined by a combination of electron-electron and electron-vibrational coupling, and are sensitive to the interactions with the wider local environment. Furthermore, we assess the importance of nuclear tunnelling and examine the suitability of semi-classical Marcus theory as a description of charge transport in molecular devices.Comment: version accepted in Nature Communications; SI available at https://researchportal.hw.ac.uk/en/publications/understanding-resonant-charge-transport-through-weakly-coupled-s
    corecore