201 research outputs found
Gravitational Waves in a Spatially Closed deSitter Spacetime
Perturbation of gravitational fields may be decomposed into scalar,vector and
tensor components.In this paper we concern with the evolution of tensor mode
perturbations in a spatially closed deSitter background of RW form. It may be
thought as gravitional waves in a classical description. The chosen background
has the advantage of to be maximally extended and symmetric. The spatially flat
models commonly emerge from inflationary scenarios are not completely
extended.We first derive the general weak field equations.Then the form of the
field equations in two special cases, planar and spherical waves are obtained
and their solutions are presented. We conclued with discussing the significance
of the results and their implications.Comment: 16 pages,no figure
Convergence of vector bundles with metrics of Sasaki-type
If a sequence of Riemannian manifolds, , converges in the pointed
Gromov-Hausdorff sense to a limit space, , and if are vector
bundles over endowed with metrics of Sasaki-type with a uniform upper
bound on rank, then a subsequence of the converges in the pointed
Gromov-Hausdorff sense to a metric space, . The projection maps
converge to a limit submetry and the fibers converge to
its fibers; the latter may no longer be vector spaces but are homeomorphic to
, where is a closed subgroup of ---called the {\em wane
group}--- that depends on the basepoint and that is defined using the holonomy
groups on the vector bundles. The norms converges to a map
compatible with the re-scaling in and the -action
on converges to an action on compatible with the
limiting norm.
In the special case when the sequence of vector bundles has a uniform lower
bound on holonomy radius (as in a sequence of collapsing flat tori to a
circle), the limit fibers are vector spaces. Under the opposite extreme, e.g.
when a single compact -dimensional manifold is re-scaled to a point, the
limit fiber is where is the closure of the holonomy group of the
compact manifold considered.
An appropriate notion of parallelism is given to the limiting spaces by
considering curves whose length is unchanged under the projection. The class of
such curves is invariant under the -action and each such curve preserves
norms. The existence of parallel translation along rectifiable curves with
arbitrary initial conditions is also exhibited. Uniqueness is not true in
general, but a necessary condition is given in terms of the aforementioned wane
groups .Comment: 44 pages, 1 figure, in V.2 added Theorem E and Section 4 on
parallelism in the limit space
Understanding resonant charge transport through weakly coupled single-molecule junctions
Off-resonant charge transport through molecular junctions has been
extensively studied since the advent of single-molecule electronics and it is
now well understood within the framework of the non-interacting Landauer
approach. Conversely, gaining a qualitative and quantitative understanding of
the resonant transport regime has proven more elusive. Here, we study resonant
charge transport through graphene-based zinc-porphyrin junctions. We
experimentally demonstrate an inadequacy of the non-interacting Landauer theory
as well as the conventional single-mode Franck-Condon model. Instead, we model
the overall charge transport as a sequence of non-adiabatic electron transfers,
the rates of which depend on both outer and inner-sphere vibrational
interactions. We show that the transport properties of our molecular junctions
are determined by a combination of electron-electron and electron-vibrational
coupling, and are sensitive to the interactions with the wider local
environment. Furthermore, we assess the importance of nuclear tunnelling and
examine the suitability of semi-classical Marcus theory as a description of
charge transport in molecular devices.Comment: version accepted in Nature Communications; SI available at
https://researchportal.hw.ac.uk/en/publications/understanding-resonant-charge-transport-through-weakly-coupled-s
Staphylococcus aureus Isolates from Bovine Mastitis in Eight Countries: Genotypes, Detection of Genes Encoding Different Toxins and Other Virulence Genes
Staphylococcus aureus is recognized worldwide as one of the major agents of dairy cow intra-mammary infections. This microorganism can express a wide spectrum of pathogenic factors used to attach, colonize, invade and infect the host. The present study evaluated 120 isolates from eight different countries that were genotyped by RS-PCR and investigated for 26 different virulence factors to increase the knowledge on the circulating genetic lineages among the cow population with mastitis. New genotypes were observed for South African strains while for all the other countries new variants of existing genotypes were detected. For each country, a specific genotypic pattern was found. Among the virulence factors, fmtB, cna, clfA and leucocidins genes were the most frequent. The sea and sei genes were present in seven out of eight countries; seh showed high frequency in South American countries (Brazil, Colombia, Argentina), while sel was harboured especially in one Mediterranean country (Tunisia). The etb, seb and see genes were not detected in any of the isolates, while only two isolates were MRSA (Germany and Italy) confirming the low diffusion of methicillin resistance microorganism among bovine mastitis isolates. This work demonstrated the wide variety of S. aureus genotypes found in dairy cattle worldwide. This condition suggests that considering the region of interest might help to formulate strategies for reducing the infection spreading
Institutional Herding in Financial Markets: New Evidence Through the Lens of a Simulated Model
Due to data limitations and the absence of testable, model-based predictions, theory and evidence on herd behavior are only loosely connected. This paper contributes towards closing this gap in the herding literature. We use numerical simulations of a herd model to derive new, theory-based predictions for aggregate herding intensity. Using high-frequency, investor-specific trading data we confirm the predicted impact of information risk on herding. In contrast, the increase in buy herding measured for the financial crisis period cannot be explained by the herd model
The importance of understanding individual differences in Down syndrome
In this article, we first present a summary of the general assumptions about Down syndrome (DS) still to be found in the literature. We go on to show how new research has modified these assumptions, pointing to a wide range of individual differences at every level of description. We argue that, in the context of significant increases in DS life expectancy, a focus on individual differences in trisomy 21 at all levels—genetic, cellular, neural, cognitive, behavioral, and environmental—constitutes one of the best approaches for understanding genotype/phenotype relations in DS and for exploring risk and protective factors for Alzheimer’s disease in this high-risk population
Understanding resonant charge transport through weakly coupled single-molecule junctions
Off-resonant charge transport through molecular junctions has been
extensively studied since the advent of single-molecule electronics and it is
now well understood within the framework of the non-interacting Landauer
approach. Conversely, gaining a qualitative and quantitative understanding of
the resonant transport regime has proven more elusive. Here, we study resonant
charge transport through graphene-based zinc-porphyrin junctions. We
experimentally demonstrate an inadequacy of the non-interacting Landauer theory
as well as the conventional single-mode Franck-Condon model. Instead, we model
the overall charge transport as a sequence of non-adiabatic electron transfers,
the rates of which depend on both outer and inner-sphere vibrational
interactions. We show that the transport properties of our molecular junctions
are determined by a combination of electron-electron and electron-vibrational
coupling, and are sensitive to the interactions with the wider local
environment. Furthermore, we assess the importance of nuclear tunnelling and
examine the suitability of semi-classical Marcus theory as a description of
charge transport in molecular devices.Comment: version accepted in Nature Communications; SI available at
https://researchportal.hw.ac.uk/en/publications/understanding-resonant-charge-transport-through-weakly-coupled-s
- …