54 research outputs found

    First insights on Lake General Carrera/Buenos Aires/Chelenko water balance

    Get PDF
    Lago General Carrera (Chile) also called Lago Buenos Aires (Argentina) or originally Chelenko by the native habitants of the region is located in Patagonia on the Chilean-Argentinean border. It is the largest lake in Chile with a surface area of 1850 km<sup>2</sup>. The lake is of glacial/tectonic origin and surrounded by the Andes mountain range. The lake drains primarily to the Pacific Ocean to the west, through the Baker River (one of Chile's largest rivers), and intermittently eastward to the Atlantic Ocean. We report ongoing results from an investigation of the seasonal hydrological cycle of the lake basin. The contribution by river input through snowmelt from the Andes is of primary importance, though the lack of water input by ungaged rivers is also critical. We present the main variables involved in the water balance of Lake General Carrera/Buenos Aires/Chelenko, such as influent and effluent river flows, precipitation, and evaporation, all this based mostly in in-situ information

    Evaluation of Analytical Methods to Study Aquifer Properties with Pumping Test in Deccan Basalt Region of the Morna River Basin in Akola District of Maharashtra in India

    Get PDF
    Fifteen pumping tests were performed in the Deccan basalt region of the Morna river basin in Akola district of Maharashtra in India. It is an artesian well as it is in the discharge zone of this coastal aquifer. Transmissivity (T) and storage coefficient (S) must be considered as aquifer parameters and used in groundwater recharge analysis. During the analysis of time-drawdown, the graphs were developed using pumping test methods and most of the pumps’ water initially comes from the well storage. Analysis of the well in tapping aquifer in Deccan basalt shows the existing relationship between porosity and specific yield. All of the aquifer testing methods have suggested ground recharge structures such as open well, bore well, and reservoir in hard rock terrains. The data and information are very helpful for hydraulic conditions, aquifer zones, and open wells development and management. The aquifer’s parameters are identified as important factors for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. The results are optimized, hence these aquifer parameters are important for scientific planning and engineering practices

    Glacier Monitoring Based on Multi-Spectral and Multi-Temporal Satellite Data: A Case Study for Classification with Respect to Different Snow and Ice Types

    Get PDF
    Remote sensing techniques are frequently applied for the surveying of remote areas, where the use of conventional surveying techniques remains difficult and impracticable. In this paper, we focus on one of the remote glacier areas, namely the Tyndall Glacier area in the Southern Patagonian Icefield in Chile. Based on optical remote sensing data in the form of multi-spectral Sentinel-2 imagery, we analyze the extent of different snow and ice classes on the surface of the glacier by means of pixel-wise classification. Our study comprises three main steps: (1) Labeled Sentinel-2 compliant data are obtained from theoretical spectral reflectance curves, as there are no training data available for the investigated area; (2) Four different classification approaches are used and compared in their ability to identify the defined five snow and ice types, thereof two unsupervised approaches (k-means clustering and rule-based classification via snow and ice indices) and two supervised approaches (Linear Discriminant Analysis and Random Forest classifier); (3) We first focus on the pixel-wise classification of Sentinel-2 imagery, and we then use the best-performing approach for a multi-temporal analysis of the Tyndall Glacier area. While the achieved classification results reveal that all of the used classification approaches are suitable for detecting different snow and ice classes on the glacier surface, the multi-temporal analysis clearly reveals the seasonal development of the glacier. The change of snow and ice types on the glacier surface is evident, especially between the end of ablation season (April) and the end of accumulation season (September) in Southern Chile

    Assessing the importance and expression of the 6-year geomagnetic oscillation

    Get PDF
    The first time derivative of residual length-of-day observations is known to contain a distinctive 6 year periodic oscillation. Here we theorize that through the flow accelerations at the top of the core the same periodicity should arise in the geomagnetic secular acceleration. We use the secular acceleration of the CHAOS-3 and CM4 geomagnetic field models to recover frequency spectra through both a traditional Fourier analysis and an empirical mode decomposition. We identify the 6 year periodic signal in the geomagnetic secular acceleration and characterize its spatial behavior. This signal seems to be closely related to recent geomagnetic jerks. We also identify a 2.5 year periodic signal in CHAOS-3 with unknown origin. This signal is strictly axially dipolar and is absent from other magnetic or geodetic time series

    The influence of global warming in Earth rotation speed

    Get PDF
    The tendency of the atmospheric angular momentum (AAM) is investigated using a 49-year set of monthly AAM data for the period January 1949-December 1997. This data set is constructed with zonal wind values from the reanalyses of NCEP/NCAR, used in conjunction with a variety of operationally produced AAM time series with different independent sources and lengths over 1976-1997. In all the analyzed AAM series the linear trend is found to be positive. Since the angular momentum of the atmosphere-earth system is conserved this corresponds to a net loss of angular momentum by the solid earth, therefore decreasing the Earth rotation speed and increasing the length of day (LOD). The AAM rise is significant to the budget of angular momentum of the global atmosphere-earth system; its value in milliseconds/century (ms/cy) is +0.56 ms/cy, corresponding to one-third of the estimated increase in LOD (+1.7 ms/cy). The major contribution to this secular trend in AAM comes from the equatorial Tropopause. This is consistent with results from a previous study using a simplified aqua-planet model to investigate the AAM variations due to near equatorial warming conditions. During the same time interval, 1949-1997, the global marine + land-surface temperature increases by about 0.79 °C/cy, showing a linear correspondence between surface temperature increase and global AAM of about 0.07 ms per 0.1 °C. These results imply that atmospheric angular momentum may be used as an independent index of the global atmosphere's dynamical response to the greenhouse forcing, and as such, the length of day may be used as an indirect indicator of global warming.Key words. Meteorology and atmospheric dynamics (general circulation) · Geodes

    The influence of global warming in Earth rotation speed

    No full text
    • …
    corecore