13 research outputs found

    Framing the discussion of microorganisms as a facet of social equity in human health

    Get PDF
    What do “microbes” have to do with social equity? These microorganisms are integral to our health, that of our natural environment, and even the “health” of the environments we build. The loss, gain, and retention of microorganisms—their flow between humans and the environment—can greatly impact our health. It is well-known that inequalities in access to perinatal care, healthy foods, quality housing, and the natural environment can create and arise from social inequality. Here, we focus on the argument that access to beneficial microorganisms is a facet of public health, and health inequality may be compounded by inequitable microbial exposure

    Microbial community succession on developing lesions on human enamel

    Get PDF
    Dental caries is one of the most common diseases in the world. However, our understanding of how the microbial community composition changes in vivo as caries develops is lacking.An in vivo model was used in a longitudinal cohort study to investigate shifts in the microbial community composition associated with the development of enamel caries.White spot lesions were generated in vivo on human teeth predetermined to be extracted for orthodontic reasons. The bacterial microbiota on sound enamel and on developing carious lesions were identified using the Human Oral Microbe Identification Microarray (HOMIM), which permits the detection of about 300 of the approximate 600 predominant bacterial species in the oral cavity.After only seven weeks, 75% of targeted teeth developed white spot lesions (8 individuals, 16 teeth). The microbial community composition of the plaque over white spot lesions differed significantly as compared to sound enamel. Twenty-five bacterial taxa, including Streptococcus mutans, Atopobium parvulum, Dialister invisus, and species of Prevotella and Scardovia, were significantly associated with initial enamel lesions. In contrast, 14 bacterial taxa, including species of Fusobacterium, Campylobacter, Kingella, and Capnocytophaga, were significantly associated with sound enamel.The bacterial community composition associated with the progression of enamel lesions is specific and much more complex than previously believed. This investigation represents one of the first longitudinally-derived studies for caries progression and supports microbial data from previous cross-sectional studies on the development of the disease. Thus, the in vivo experiments of generating lesions on teeth destined for extraction in conjunction with HOMIM analyses represent a valid model to study succession of supragingival microbial communities associated with caries development and to study efficacy of prophylactic and restorative treatments

    Perl and LWP

    No full text

    The Place of Philosophy in Bioethics Today

    No full text
    In some views, philosophy\u27s glory days in bioethics are over. While philosophers were especially important in the early days of the field, so the argument goes, the majority of the work in bioethics today involves the simple application of existing philosophical principles or concepts, as well as empirical work in bioethics. Here, we address this view head on and ask: What is the role of philosophy in bioethics today? This paper has three specific aims: (1) to respond to skeptics and make the case that philosophy and philosophers still have a very important and meaningful role to play in contemporary bioethics, (2) to discuss some of the current challenges to the meaningful integration of philosophy and bioethics, and (3) to make suggestions for what needs to happen in order for the two fields to stay richly connected. We outline how bioethics center directors, funders, and philosopher bioethicists can help

    Framing the discussion of microorganisms as a facet of social equity in human health.

    No full text
    What do "microbes" have to do with social equity? These microorganisms are integral to our health, that of our natural environment, and even the "health" of the environments we build. The loss, gain, and retention of microorganisms-their flow between humans and the environment-can greatly impact our health. It is well-known that inequalities in access to perinatal care, healthy foods, quality housing, and the natural environment can create and arise from social inequality. Here, we focus on the argument that access to beneficial microorganisms is a facet of public health, and health inequality may be compounded by inequitable microbial exposure
    corecore