224 research outputs found

    Methodologies for probing the metatranscriptome of grassland soil

    Get PDF
    Metatranscriptomics provides an opportunity to identify active microbes and expressed genes in complex soil communities in response to particular conditions. Currently, there are a limited number of soil metatranscriptome studies to provide guidance for using this approach in this challenging matrix. Hence, we evaluated the technical challenges of applying soil metatranscriptomics to a highly diverse, low activity natural system. We used a non-targeted rRNA removal approach, duplex nuclease specific (DSN) normalization, to generate a metatranscriptomic library from field collected soil supporting a perennial grass, Miscanthus x giganteus (a biofuel crop), and evaluated its ability to provide insight into its active community members and their expressed protein-coding genes. We also evaluated various bioinformatics approaches for analyzing our soil metatranscriptome, including annotation of unassembled transcripts, de novo assembly, and aligning reads to known genomes. Further, we evaluated various databases for their ability to provide annotations for our metatranscriptome. Overall, our results emphasize that low activity, highly genetically diverse and relatively stable microbiomes, like soil, requires very deep sequencing to sample the transcriptome beyond the common core functions. We identified several key areas that metatranscriptomic analyses will benefit from including increased rRNA removal, assembly of short read transcripts, and more relevant reference bases while providing a priority set of expressed genes for functional assessment

    NSeq: a multithreaded Java application for finding positioned nucleosomes from sequencing data

    Get PDF
    We introduce NSeq, a fast and efficient Java application for finding positioned nucleosomes from the high-throughput sequencing of MNase-digested mononucleosomal DNA. NSeq includes a user-friendly graphical interface, computes false discovery rates (FDRs) for candidate nucleosomes from Monte Carlo simulations, plots nucleosome coverage and centers, and exploits the availability of multiple processor cores by parallelizing its computations. Java binaries and source code are freely available at https://github.com/songlab/NSeq. The software is supported on all major platforms equipped with Java Runtime Environment 6 or later

    Successful use of axonal transport for drug delivery by synthetic molecular vehicles

    Get PDF
    We report the use of axonal transport to achieve intraneural drug delivery. We constructed a novel tripartite complex of an axonal transport facilitator conjugated to a linker molecule bearing up to a hundred reversibly attached drug molecules. The complex efficiently enters nerve terminals after intramuscular or intradermal administration and travels within axonal processes to neuron cell bodies. The tripartite agent provided 100-fold amplification of saturable neural uptake events, delivering multiple drug molecules per complex. _In vivo_, analgesic drug delivery to systemic and to non-targeted neural tissues was greatly reduced compared to existing routes of administration, thus exemplifying the possibility of specific nerve root targeting and effectively increasing the potency of the candidate drug gabapentin 300-fold relative to oral administration

    Transmembrane Stem Factor Nanodiscs Enhanced Revascularization in a Hind Limb Ischemia Model in Diabetic, Hyperlipidemic Rabbits

    Get PDF
    Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia

    Transmembrane Stem Factor Nanodiscs Enhanced Revascularization in a Hind Limb Ischemia Model in Diabetic, Hyperlipidemic Rabbits

    Get PDF
    Therapies to revascularize ischemic tissue have long been a goal for the treatment of vascular disease and other disorders. Therapies using stem cell factor (SCF), also known as a c-Kit ligand, had great promise for treating ischemia for myocardial infarct and stroke, however clinical development for SCF was stopped due to toxic side effects including mast cell activation in patients. We recently developed a novel therapy using a transmembrane form of SCF (tmSCF) delivered in lipid nanodiscs. In previous studies, we demonstrated tmSCF nanodiscs were able to induce revascularization of ischemia limbs in mice and did not activate mast cells. To advance this therapeutic towards clinical application, we tested this therapy in an advanced model of hindlimb ischemia in rabbits with hyperlipidemia and diabetes. This model has therapeutic resistance to angiogenic therapies and maintains long term deficits in recovery from ischemic injury. We treated rabbits with local treatment with tmSCF nanodiscs or control solution delivered locally from an alginate gel delivered into the ischemic limb of the rabbits. After eight weeks, we found significantly higher vascularity in the tmSCF nanodisc-treated group in comparison to alginate treated control as quantified through angiography. Histological analysis also showed a significantly higher number of small and large blood vessels in the ischemic muscles of the tmSCF nanodisc treated group. Importantly, we did not observe inflammation or mast cell activation in the rabbits. Overall, this study supports the therapeutic potential of tmSCF nanodiscs for treating peripheral ischemia

    Frameless Image-Guided Radiosurgery for Trigeminal Neuralgia

    Get PDF
    Background: Frameless image-guided radiosurgery (IGRS) is a safe and effective noninvasive treatment for trigeminal neuralgia (TN). This study evaluates the use of frameless IGRS to treat patients with refractory TN. Methods: We reviewed the records of 20 patients diagnosed with TN who underwent frameless IGRS treatments between March 2012 and December 2013. Facial pain was graded using the Barrow Neurological Institute (BNI) scoring system. The initial setup uncertainty from simulation to treatment and the patient intrafraction uncertainty were measured. The median follow-up was 32 months. Results: All patients\u27 pain was BNI Grade IV or V before the frameless IGRS treatment. The mean intrafraction shift was 0.43 mm (0.28-0.76 mm), and the maximum intrafraction shift was 0.95 mm (0.53-1.99 mm). At last follow-up, 8 (40%) patients no longer required medications (BNI 1 or 2), 11 (55%) patients were pain free but required medication (BNI 3), and 1 (5%) patient had no pain relief (BNI 5). Patients who did not have prior surgery had a higher odds ratio for pain relief compared to patients who had prior surgery (14.9, P = 0.0408). Conclusions: Frameless IGRS provides comparable dosimetric and clinical outcomes to frame-based SRS in a noninvasive fashion for patients with medically refractory TN
    • ā€¦
    corecore