7 research outputs found

    Intrastriatal Transplantation of Adenovirus-Generated Induced Pluripotent Stem Cells for Treating Neuropathological and Functional Deficits in a Rodent Model of Huntington's Disease

    No full text
    International audienceInduced pluripotent stem cells (iPSCs) show considerable promise for cell replacement therapies for Huntington's disease (HD). Our laboratory has demonstrated that tail-tip fibroblasts, reprogrammed into iPSCs via two adenoviruses, can survive and differentiate into neuronal lineages following trans-plantation into healthy adult rats. However, the ability of these cells to survive, differentiate, and restore function in a damaged brain is unknown. To this end, adult rats received a regimen of 3-nitro-propionic acid (3-NP) to induce behavioral and neuropathological deficits that resemble HD. At 7, 21, and 42 days after the initiation of 3-NP or vehicle, the rats received intrastriatal bilateral transplan-tation of iPSCs. All rats that received 3-NP and vehicle treatment displayed significant motor impairment , whereas those that received iPSC transplantation after 3-NP treatment had preserved motor function. Histological analysis of the brains of these rats revealed significant decreases in optical den-sitometric measures in the striatum, lateral ventricle enlargement, as well as an increase in striosome size in all rats receiving 3-NP when compared with sham rats. The 3-NP-treated rats given transplants of iPSCs in the 7-or 21-day groups did not exhibit these deficits. Transplantation of iPSCs at the late-stage (42-day) time point did not protect against the 3-NP-induced neuropathology, despite preserving motor function. Transplanted iPSCs were found to survive and differentiate into region-specific neurons in the striatum of 3-NP rats, at all transplantation time points. Taken together, these results suggest that transplantation of adenovirus-generated iPSCs may provide a potential avenue for therapeutic treatment of HD

    A Mixed-Surface Polyamidoamine Dendrimer for In Vitro and In Vivo Delivery of Large Plasmids

    No full text
    Drug delivery to the brain is highly hindered by the presence of the blood–brain barrier (BBB), which prevents the entry of many potential drugs/biomolecules into the brain. One of the current strategies to achieve gene therapy for neurodegenerative diseases involves direct injection of a viral vector into the brain. There are various disadvantages of viral vectors, including limitations of cargo size and safety concerns. Nanomolecules, such as dendrimers, serve as an excellent alternative to viral delivery. In this study, as proof-of-concept, we used a surface-modified dendrimer complex and delivered large plasmids to cells in vitro and in vivo in healthy rats via intracranial injection. The dendrimers were biodegradable by chemicals found within cells and toxicity assays revealed that the modified dendrimers were much less toxic than unmodified amine-surface dendrimers. As mentioned in our previous publication, these dendrimers with appropriately modified surfaces are safe, can deliver large plasmids to the brain, and can overcome the cargo size limitations associated with viral vectors. The biocompatibility of this dendritic nanomolecule and the ability to finely tune its surface chemistry provides a gene delivery system that could facilitate future in vivo cellular reprograming and other gene therapies

    PAMAM Dendrimers Cross the Blood–Brain Barrier When Administered through the Carotid Artery in C57BL/6J Mice

    No full text
    Drug delivery into the central nervous system (CNS) is challenging due to the blood–brain barrier (BBB) and drug delivery into the brain overcoming the BBB can be achieved using nanoparticles such as dendrimers. The conventional cationic dendrimers used are highly toxic. Therefore, the present study investigates the role of novel mixed surface dendrimers, which have potentially less toxicity and can cross the BBB when administered through the carotid artery in mice. In vitro experiments investigated the uptake of amine dendrimers (G1-NH2 and G4-NH2) and novel dendrimers (G1-90/10 and G4-90/10) by primary cortical cultures. In vivo experiments involved transplantation of G4-90/10 into mice through (1) invasive intracranial injections into the striatum; and (2) less invasive carotid injections. The animals were sacrificed 24-h and 1-week post-transplantations and their brains were analyzed. In vivo experiments proved that the G4-90/10 can cross the BBB when injected through the carotid artery and localize within neurons and glial cells. The dendrimers were found to migrate through the corpus callosum 1-week post intracranial injection. Immunohistochemistry showed that the migrating cells are the dendrimer-infected glial cells. Overall, our results suggest that poly-amidoamine (PAMAM) dendrimers may be used as a minimally invasive means to deliver biomolecules for treating neurological diseases or disorder

    UK AMD EMR USERS GROUP REPORT V:benefits of initiating ranibizumab therapy for neovascular AMD in eyes with vision better than 6/12

    No full text
    BACKGROUND/AIMS: To study the effectiveness and clinical relevance of eyes treated with good (better than 6/12 or >70 Early Treatment Diabetic Retinopathy Study letters) visual acuity (VA) when initiating treatment with ranibizumab for neovascular age-related macular degeneration (nAMD) in the UK National Health Service. Currently eyes with VA better than (>) 6/12 are not routinely funded for therapy. METHODS: Multicentre national nAMD database study on patients treated 3–5 years prior to the analysis. Anonymised structured data were collected from 14 centres. The primary outcome was the mean VA at year 1, 2 and 3. Secondary measures included the number of clinic visits and injections. RESULTS: The study included 12 951 treatment-naive eyes of 11 135 patients receiving 92 976 ranibizumab treatment episodes. A total of 754 patients had baseline VA better than 6/12 and at least 1-year of follow up. Mean VA of first treated eyes with baseline VA>6/12 at year 1, 2, 3 were 6/10, 6/12, 6/15, respectively and those with baseline VA 6/12 to >6/24 were 6/15, 6/17, 6/20, respectively (p values <0.001 for comparing differences between 6/12 and 6/12–6/24 groups). For the second eyes with baseline VA>6/12, mean VA at year 1, 2, 3 were 6/9, 6/9, 6/10 and those with baseline VA 6/12 to >6/24 were 6/15, 6/15, 6/27, respectively (p values <0.001–0.005). There was no significant difference in the average number of clinic visits or injections between those with VA better and worse than 6/12. CONCLUSIONS: All eyes with baseline VA>6/12 maintained better mean VA than the eyes with baseline VA 6/12 to >6/24 at all time points for at least 2 years. The significantly better visual outcome in patients who were treated with good baseline VA has implications on future policy regarding the treatment criteria for nAMD patients’ funding
    corecore