19 research outputs found

    Dynamic differences in dietary polyunsaturated fatty acid metabolism in sputum of COPD patients and controls

    Get PDF
    Introduction: Disturbances in onset and resolution of inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. Dietary polyunsaturated fatty acids (PUFAs) can be converted into lipid mediators here collectively named oxylipins. These include classical eicosanoids, but also pro-resolving mediators. A balanced production of pro-inflammatory and pro-resolving oxylipins is of importance for adequate inflammatory responses and subsequent return to homeostasis. Objectives: Here we investigated if PUFA metabolism is disturbed in COPD patients. Methods: Free PUFA and oxylipin levels were measured in induced sputum samples from the Bergen COPD cohort and COPD exacerbation study using liquid chromatography-mass spectrometry. Additionally, effects of whole cigarette smoke on PUFA metabolism in air-liquid interface cultures of primary bronchial epithelial cells were assessed. Results: Significantly lower levels of free alpha-linolenic acid, linoleic acid and eicosapentaenoic acid (EPA) were detected in sputum from stable COPD patients compared to controls. During acute exacerbation (AE), levels of free arachidonic acid and docosapentaenoic acid were higher than in stable COPD patients. Furthermore, levels of omega-3 EPA- and docosahexaenoic acid-derived oxylipins were lower in sputum from stable COPD patients compared to controls. Cyclooxygenase-2-converted mediators were mostly increased during AE. In vitro studies additionally showed that cigarette smoke exposure may also directly contribute to altered epithelial PUFA metabolism, and indirectly by causing airway epithelial remodelling. Conclusions: Our findings show significant differences in PUFA metabolism in COPD patients compared to controls, further changed during AE. Airway epithelial remodelling may contribute to these changes. These findings provide new insight in impaired inflammatory resolution in COPD.publishedVersio

    The respiratory virome and exacerbations in patients with chronic obstructive pulmonary disease

    Get PDF
    Introduction Exacerbations are major contributors to morbidity and mortality in patients with chronic obstructive pulmonary disease (COPD), and respiratory bacterial and viral infections are an important trigger. However, using conventional diagnostic techniques, a causative agent is not always found. Metagenomic next-generation sequencing (mNGS) allows analysis of the complete virome, but has not yet been applied in COPD exacerbations. Objectives To study the respiratory virome in nasopharyngeal samples during COPD exacerbations using mNGS. Study design 88 nasopharyngeal swabs from 63 patients from the Bergen COPD Exacerbation Study (2006-2010) were analysed by mNGS and in-house qPCR for respiratory viruses. Both DNA and RNA were sequenced simultaneously using an Illumina library preparation protocol with in-house adaptations. Results By mNGS, 24/88 samples tested positive. Sensitivity and specificity, as compared with PCR, were 96% and 98% for diagnostic targets (23/24 and 1093/1120, respectively). Additional viral pathogens detected by mNGS were herpes simplex virus type 1 and coronavirus OC43. A positive correlation was found between Cq value and mNGS viral normalized species reads (log value) (p = 0.002). Patients with viral pathogens had lower percentages of bacteriophages (p<0.001). No correlation was found between viral reads and clinical markers. Conclusions The mNGS protocol used was highly sensitive and specific for semi-quantitative detection of respiratory viruses. Excellent negative predictive value implicates the power of mNGS to exclude any pathogenic respiratory viral infectious cause in one test, with consequences for clinical decision making. Reduced abundance of bacteriophages in COPD patients with viral pathogens implicates skewing of the virome during infection, with potential consequences for the bacterial populations, during infection

    Mechanical Properties of Ca-Saturated Hydrogels with Functionalized Alginate

    No full text
    In this work, the mechanical properties and stability of alginate hydrogels containing functionalized alginates (peptide and β-cyclodextrin) were studied. There is an increasing interest in the modification of alginates to add functions such as cell attachment and increased solubility of hydrophobic drugs, for better performance in tissue engineering and drug release, respectively. Functionalization was achieved in this study via periodate oxidation followed by reductive amination, previously shown to give a high and controllable degree of substitution. Young’s modulus and the stress at rupture of the hydrogels were in general lowered when exchanging native alginate with the modified alginate. Still, the gel strength could be adjusted by the fraction of modified alginate in the mixed hydrogels as well as the degree of oxidation. No notable difference in deformation at rupture was observed while syneresis was influenced by the degree of oxidation and possibly by the nature and amount of the grafted molecules. The mixed hydrogels were less stable than hydrogels with only native alginate, and modified alginate was released from the hydrogels. Furthermore, the hydrogels in general rather disintegrated than swelled upon saline treatments

    Dynamic differences in dietary polyunsaturated fatty acid metabolism in sputum of COPD patients and controls

    No full text
    Introduction: Disturbances in onset and resolution of inflammation in chronic obstructive pulmonary disease (COPD) are incompletely understood. Dietary polyunsaturated fatty acids (PUFAs) can be converted into lipid mediators here collectively named oxylipins. These include classical eicosanoids, but also pro-resolving mediators. A balanced production of pro-inflammatory and pro-resolving oxylipins is of importance for adequate inflammatory responses and subsequent return to homeostasis. Objectives: Here we investigated if PUFA metabolism is disturbed in COPD patients. Methods: Free PUFA and oxylipin levels were measured in induced sputum samples from the Bergen COPD cohort and COPD exacerbation study using liquid chromatography-mass spectrometry. Additionally, effects of whole cigarette smoke on PUFA metabolism in air-liquid interface cultures of primary bronchial epithelial cells were assessed. Results: Significantly lower levels of free alpha-linolenic acid, linoleic acid and eicosapentaenoic acid (EPA) were detected in sputum from stable COPD patients compared to controls. During acute exacerbation (AE), levels of free arachidonic acid and docosapentaenoic acid were higher than in stable COPD patients. Furthermore, levels of omega-3 EPA- and docosahexaenoic acid-derived oxylipins were lower in sputum from stable COPD patients compared to controls. Cyclooxygenase-2-converted mediators were mostly increased during AE. In vitro studies additionally showed that cigarette smoke exposure may also directly contribute to altered epithelial PUFA metabolism, and indirectly by causing airway epithelial remodelling. Conclusions: Our findings show significant differences in PUFA metabolism in COPD patients compared to controls, further changed during AE. Airway epithelial remodelling may contribute to these changes. These findings provide new insight in impaired inflammatory resolution in COPD

    Multivariate model of the annual incidence rate ratio (IRR) of moderate or severe COPD exacerbations, estimated by a random effects negative binomial model.

    No full text
    <p>*IRR per 1 SD increase of marker value.</p><p>Multivariate model of the annual incidence rate ratio (IRR) of moderate or severe COPD exacerbations, estimated by a random effects negative binomial model.</p

    Characteristics of COPD patients according to exacerbation frequency during follow-up.

    No full text
    <p>*χ-square for categorical variables, t-test for means and Kruskal Wallis test for medians</p><p>Characteristics of COPD patients according to exacerbation frequency during follow-up.</p

    Bivariate predictors of copd-exacerbation duration more than three weeks, estimated by a generalized estimation equation logistic regression model.

    No full text
    <p>*IRR per 1 SD increase of marker value.</p><p>Bivariate predictors of copd-exacerbation duration more than three weeks, estimated by a generalized estimation equation logistic regression model.</p
    corecore