232 research outputs found

    Regulation of Dendritic Protein Synthesis by Miniature Synaptic Events

    Get PDF
    We examined dendritic protein synthesis after a prolonged blockade of action potentials alone and after a blockade of both action potentials and miniature excitatory synaptic events (minis). Relative to controls, dendrites exposed to a prolonged blockade of action potentials showed diminished protein synthesis. Dendrites in which both action potentials and minis were blocked showed enhanced protein synthesis, suggesting that minis inhibit dendritic translation. When minis were acutely blocked or stimulated, an immediate increase or decrease, respectively, in dendritic translation was observed. Taken together, these results reveal a role for miniature synaptic events in the acute regulation of dendritic protein synthesis in neurons

    Intracellular calcium and calmodulin link brain-derived neurotrophic factor to p70S6 kinase phosphorylation and dendritic protein synthesis

    Full text link
    The mammalian target of rapamycin (mTOR)/p70S6 kinase (S6K) pathway plays an important role in brain-derived neurotrophic factor (BDNF)-mediated protein synthesis and neuroplasticity. Although many aspects of neuronal function are regulated by intracellular calcium ([Ca 2+ ] i ) and calmodulin (CaM), their functions in BDNF-induced phosphorylation of p70S6K and protein synthesis are largely unknown. Here, we report that BDNF, via TrkB-dependent activation of mTOR, induces sustained phosphorylation of p70S6K at Thr389 and Thr421/Ser424. BDNF-induced phosphorylation at Thr389 was dependent on PI3 kinase but independent of ERK-MAPK. The previously identified MAPK phosphorylation site at Thr421/Ser424 required both PI3K and MAPK in BDNF-stimulated neurons. Furthermore, we found that the reduction in [Ca 2+ ] i , but not extracellular calcium, blocked the BDNF-induced phosphorylation of p70S6K at both sites. Inhibition of CaM by W13 also blocked p70S6K phosphorylation. In correlation, W13 inhibited BDNF-induced local dendritic protein synthesis. Interestingly, sustained elevation of [Ca 2+ ] i by membrane depolarization antagonized the BDNF-induced p70S6K phosphorylation. Finally, the BDNF-induced p70S6K phosphorylation did not require the increase of calcium level through either extracellular influx or PLC-mediated intracellular calcium release. Collectively, these results indicate that the basal level of intracellular calcium gates BDNF-induced activation of p70S6K and protein synthesis through CaM. © 2009 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/69196/1/22321_ftp.pd

    Fragile X Related Protein 1 Clusters with Ribosomes and Messenger RNAs at a Subset of Dendritic Spines in the Mouse Hippocampus

    Get PDF
    The formation and storage of memories in neuronal networks relies on new protein synthesis, which can occur locally at synapses using translational machinery present in dendrites and at spines. These new proteins support long-lasting changes in synapse strength and size in response to high levels of synaptic activity. To ensure that proteins are made at the appropriate time and location to enable these synaptic changes, messenger RNA (mRNA) translation is tightly controlled by dendritic RNA-binding proteins. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein with high homology to Fragile X Mental Retardation Protein (FMRP) and is known to repress and activate mRNA translation in non-neuronal cells. However, unlike FMRP, very little is known about the role of FXR1P in the central nervous system. To understand if FXR1P is positioned to regulate local mRNA translation in dendrites and at synapses, we investigated the expression and targeting of FXR1P in developing hippocampal neurons in vivo and in vitro. We found that FXR1P was highly expressed during hippocampal development and co-localized with ribosomes and mRNAs in the dendrite and at a subset of spines in mouse hippocampal neurons. Our data indicate that FXR1P is properly positioned to control local protein synthesis in the dendrite and at synapses in the central nervous system

    Functional Characterization of the Dendritically Localized mRNA Neuronatin in Hippocampal Neurons

    Get PDF
    Local translation of dendritic mRNAs plays an important role in neuronal development and synaptic plasticity. Although several hundred putative dendritic transcripts have been identified in the hippocampus, relatively few have been verified by in situ hybridization and thus remain uncharacterized. One such transcript encodes the protein neuronatin. Neuronatin has been shown to regulate calcium levels in non-neuronal cells such as pancreatic or embryonic stem cells, but its function in mature neurons remains unclear. Here we report that neuronatin is translated in hippocampal dendrites in response to blockade of action potentials and NMDA-receptor dependent synaptic transmission by TTX and APV. Our study also reveals that neuronatin can adjust dendritic calcium levels by regulating intracellular calcium storage. We propose that neuronatin may impact synaptic plasticity by modulating dendritic calcium levels during homeostatic plasticity, thereby potentially regulating neuronal excitability, receptor trafficking, and calcium dependent signaling

    Dendritic trafficking faces physiologically critical speed-precision tradeoffs

    Get PDF
    Nervous system function requires intracellular transport of channels, receptors, mRNAs, and other cargo throughout complex neuronal morphologies. Local signals such as synaptic input can regulate cargo trafficking, motivating the leading conceptual model of neuron-wide transport, sometimes called the ‘sushi-belt model’ (Doyle and Kiebler, 2011). Current theories and experiments are based on this model, yet its predictions are not rigorously understood. We formalized the sushi belt model mathematically, and show that it can achieve arbitrarily complex spatial distributions of cargo in reconstructed morphologies. However, the model also predicts an unavoidable, morphology dependent tradeoff between speed, precision and metabolic efficiency of cargo transport. With experimental estimates of trafficking kinetics, the model predicts delays of many hours or days for modestly accurate and efficient cargo delivery throughout a dendritic tree. These findings challenge current understanding of the efficacy of nucleus-to-synapse trafficking and may explain the prevalence of local biosynthesis in neurons.This research was supported by the Department of Energy Computational Science Graduate Fellowship, NIH Grant 1P01NS079419, NIH Grant P41GM103712, the Howard Hughes Medical Institute

    Degradation of high affinity HuD targets releases Kv1.1 mRNA from miR-129 repression by mTORC1

    Get PDF
    Little is known about how a neuron undergoes site-specific changes in intrinsic excitability during neuronal activity. We provide evidence for a novel mechanism for mTORC1 kinase–dependent translational regulation of the voltage-gated potassium channel Kv1.1 messenger RNA (mRNA). We identified a microRNA, miR-129, that repressed Kv1.1 mRNA translation when mTORC1 was active. When mTORC1 was inactive, we found that the RNA-binding protein, HuD, bound to Kv1.1 mRNA and promoted its translation. Unexpectedly, inhibition of mTORC1 activity did not alter levels of miR-129 and HuD to favor binding to Kv1.1 mRNA. However, reduced mTORC1 signaling caused the degradation of high affinity HuD target mRNAs, freeing HuD to bind Kv1.1 mRNA. Hence, mTORC1 activity regulation of mRNA stability and high affinity HuD-target mRNA degradation mediates the bidirectional expression of dendritic Kv1.1 ion channels

    Postnatal deamidation of 4E-BP2 in brain enhances its association with raptor and alters kinetics of excitatory synaptic transmission

    Get PDF
    The eIF4E-binding proteins (4E-BPs) repress translation initiation by preventing eIF4F complex formation. Of the three mammalian 4E-BPs, only 4E-BP2 is enriched in the mammalian brain and plays an important role in synaptic plasticity and learning and memory formation. Here we describe asparagine deamidation as brain-specific posttranslational modification of 4E-BP2. Deamidation is the spontaneous conversion of asparagines to aspartates. Two deamidation sites were mapped to an asparagine-rich sequence unique to 4E-BP2. Deamidated 4E-BP2 exhibits increased binding to the mammalian Target of Rapamycin (mTOR)-binding protein raptor, which effects its reduced association with eIF4E. 4E-BP2 deamidation occurs during postnatal development, concomitant with the attenuation of the activity of the PI3K-Akt-mTOR signalling pathway. Expression of deamidated 4E-BP2 in 4E-BP2−/− neurons yielded mEPSCs exhibiting increased charge transfer with slower rise and decay kinetics, relative to the wild type form. 4E-BP2 deamidation may represent a compensatory mechanism for the developmental reduction of PI3K-Akt-mTOR signalling
    corecore