2,673 research outputs found

    Cathodal Transcranial Direct Current Stimulation Over Left Dorsolateral Prefrontal Cortex Area Promotes Implicit Motor Learning in a Golf Putting Task.

    Get PDF
    © 2015 Elsevier Inc. All rights reserved. Background Implicit motor learning is characterized by low dependence on working memory and stable performance despite stress, fatigue, or multi-tasking. However, current paradigms for implicit motor learning are based on behavioral interventions that are often task-specific and limited when applied in practice. Objective To investigate whether cathodal transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (DLPFC) area during motor learning suppressed working memory activity and reduced explicit verbal-analytical involvement in movement control, thereby promoting implicit motor learning. Methods Twenty-seven healthy individuals practiced a golf putting task during a Training Phase while receiving either real cathodal tDCS stimulation over the left DLPFC area or sham stimulation. Their performance was assessed during a Test phase on another day. Verbal working memory capacity was assessed before and after the Training Phase, and before the Test Phase. Results Compared to sham stimulation, real stimulation suppressed verbal working memory activity after the Training Phase, but enhanced golf putting performance during the Training Phase and the Test Phase, especially when participants were required to multi-task. Conclusion Cathodal tDCS over the left DLPFC may foster implicit motor learning and performance in complex real-life motor tasks that occur during sports, surgery or motor rehabilitation

    The effect of acupuncture duration on analgesia and peripheral sensory thresholds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acupuncture provides a means of peripheral stimulation for pain relief. However, the detailed neuronal mechanisms by which acupuncture relieves pain are still poorly understood and information regarding optimal treatment settings is still inadequate. Previous studies with a short burst of unilateral electroacupuncture (EA) in the Tendinomuscular Meridians (TMM) treatment model for pain demonstrated a transient dermatomally correlated bilateral analgesic effect with corresponding peripheral modality-specific sensory threshold alterations. However, the impact of EA duration on the analgesic effect in this particular treatment model is unknown. To obtain mechanistically and clinically important information regarding EA analgesia, this current prospective cross-over study assesses the effects of EA duration on analgesia and thermal sensory thresholds in the TMM treatment model.</p> <p>Methods</p> <p>Baseline peripheral sensory thresholds were measured at pre-marked testing sites along the medial aspects (liver and spleen meridians) of bilateral lower extremities. A 5-second hot pain stimulation was delivered to the testing sites and the corresponding pain Visual Analog Scale (VAS) scores were recorded. Three different EA (5Hz) stimulation durations (5, 15 and 30 minutes) were randomly tested at least one week apart. At the last 10 seconds of each EA session, 5 seconds of subject specific HP stimulation was delivered to the testing sites. The corresponding pain and EA VAS scores of de qi sensation (tingling) during and after the EA were recorded. The measurements were repeated immediately, 30 and 60 minutes after the EA stimulation. A four-factor repeat measures ANOVA was used to assess the effect of stimulation duration, time, location (thigh vs. calf) and side (ipsilateral vs. contralateral) of EA on sensory thresholds and HP VAS scores.</p> <p>Results</p> <p>A significant (P < 0.01) main effect of time and location with warm, cold and hot pain thresholds at the four testing sites without any significant difference in duration effect was observed. Similar time and location effects were observed with HP VAS with the longer durations (15 and 30 minutes) of stimulation showed a slower onset, but a more sustainable bilateral analgesic benefit than the short stimulation duration (5 minutes). The 15-minute stimulation resulted in an earlier onset of analgesic effect than the 30-minute stimulation paradigm.</p> <p>Conclusion</p> <p>Longer durations of EA stimulation provide a more sustainable analgesic benefit to hot noxious stimulation than a shorter duration of stimulation. The increase of cold threshold with sustained warm threshold temperature elevation as observed in the longer durations of EA suggests that as the duration of EA lengthened, there is a gradual shifting from an initial predominantly spinally mediated analgesic effect to a supraspinally mediated modulatory mechanism of thermal pain. The 15-minute stimulation appeared to be the optimal setting for treating acute pain in the lower extremities.</p

    Real-space mapping of tailored sheet and edge plasmons in graphene nanoresonators

    Get PDF
    Plasmons in graphene nanoresonators have many potential applications in photonics and optoelectronics, including room-temperature infrared and terahertz photodetectors, sensors, reflect arrays or modulators1, 2, 3, 4, 5, 6, 7. The development of efficient devices will critically depend on precise knowledge and control of the plasmonic modes. Here, we use near-field microscopy8, 9, 10, 11 between λ0 = 10–12 μm to excite and image plasmons in tailored disk and rectangular graphene nanoresonators, and observe a rich variety of coexisting Fabry–Perot modes. Disentangling them by a theoretical analysis allows the identification of sheet and edge plasmons, the latter exhibiting mode volumes as small as 10−8λ03. By measuring the dispersion of the edge plasmons we corroborate their superior confinement compared with sheet plasmons, which among others could be applied for efficient 1D coupling of quantum emitters12. Our understanding of graphene plasmon images is a key to unprecedented in-depth analysis and verification of plasmonic functionalities in future flatland technologies.Peer ReviewedPostprint (author's final draft

    Topologically Protected Quantum State Transfer in a Chiral Spin Liquid

    Get PDF
    Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the robust current carrying edge states associated with the quantum Hall and the quantum spin Hall effects to proposals involving topologically protected quantum memory and quantum logic operations. Here, we propose and analyze a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.Comment: 14 pages, 7 figure

    HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa

    Get PDF
    The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells

    Fermionic Coset, Critical Level W^(2)_4-Algebra and Higher Spins

    Full text link
    The fermionic coset is a limit of the pure spinor formulation of the AdS5xS5 sigma model as well as a limit of a nonlinear topological A-model, introduced by Berkovits. We study the latter, especially its symmetries, and map them to higher spin algebras. We show the following. The linear A-model possesses affine \AKMSA{pgl}{4}{4}_0 symmetry at critical level and its \AKMSA{psl}{4}{4}_0 current-current perturbation is the nonlinear model. We find that the perturbation preserves W4(2)\mathcal{W}^{(2)}_4-algebra symmetry at critical level. There is a topological algebra associated to \AKMSA{pgl}{4}{4}_0 with the properties that the perturbation is BRST-exact. Further, the BRST-cohomology contains world-sheet supersymmetric symplectic fermions and the non-trivial generators of the W4(2)\mathcal{W}^{(2)}_4-algebra. The Zhu functor maps the linear model to a higher spin theory. We analyze its \SLSA{psl}{4}{4} action and find finite dimensional short multiplets.Comment: 25 page

    Genome-wide compendium and functional assessment of in vivo heart enhancers

    Get PDF
    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function

    The pharmacological regulation of cellular mitophagy

    Get PDF
    Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications

    Scientific Publications in Nephrology and Urology Journals from Chinese Authors in East Asia: A 10-Year Survey of the Literature

    Get PDF
    BACKGROUND: Diseases of the kidneys and genitourinary tract are common health problems that affect people of all ages and demographic backgrounds. In this study, we compared the quantity and quality of nephrological and urological articles published in international journals from the three major regions of China: the mainland (ML), Hong Kong (HK), and Taiwan (TW). METHODS: Nephrological and urological articles originating from ML, TW, and HK that were published in 61 journals from 1999-2008 were retrieved from the PubMed database. We recorded the numbers of total articles, clinical trials, randomized controlled trials, case reports, impact factors (IF), citations, and articles published in the leading general-medicine journals. We used these data to compare the quantity and quality of publication output from the three regions. RESULTS: The total number of articles increased significantly from 1999 to 2008 in the three regions. The number of articles from ML has exceeded that from HK since 2004, and surpassed that from TW in 2008. Publications from TW had the highest accumulated IF, total citations of articles, and the most articles published in leading general-medicine journals. However, HK publications had the highest average IF. Although ML produced the largest quantity of articles, it exhibited the lowest quality among the three regions. CONCLUSION: The number of nephrological and urological publications originating from the three major regions of China increased significantly from 1999 to 2008. The annual number of publications by ML researchers exceeded those from TW and HK. However, the quality of articles from TW and HK was higher than that from ML
    • …
    corecore