105 research outputs found
Wave instabilities in the presence of non vanishing background in nonlinear Schrodinger systems
We investigate wave collapse ruled by the generalized nonlinear Schroedinger (NLS) equation in 1+1 dimensions, for localized excitations with non-zero background, establishing through virial identities a new criterion for blow-up. When collapse is arrested, a semiclassical approach allows us to show that the system can favor the formation of dispersive shock waves. The general findings are illustrated with a model of interest to both classical and quantum physics (cubic-quintic NLS equation), demonstrating a radically novel scenario of instability, where solitons identify a marginal condition between blow-up and occurrence of shock waves, triggered by arbitrarily small mass perturbations of different sign
Characterization of MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces
In this study, MHz pulse repetition rate femtosecond laser-irradiated gold-coated silicon surfaces under ambient condition were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction analysis (XRD), and X-ray photoelectron spectroscopy (XPS). The radiation fluence used was 0.5 J/cm2 at a pulse repetition rate of 25 MHz with 1 ms interaction time. SEM analysis of the irradiated surfaces showed self-assembled intermingled weblike nanofibrous structure in and around the laser-irradiated spots. Further TEM investigation on this nanostructure revealed that the nanofibrous structure is formed due to aggregation of Au-Si/Si nanoparticles. The XRD peaks at 32.2°, 39.7°, and 62.5° were identified as (200), (211), and (321) reflections, respectively, corresponding to gold silicide. In addition, the observed chemical shift of Au 4f and Si 2p lines in XPS spectrum of the irradiated surface illustrated the presence of gold silicide at the irradiated surface. The generation of Si/Au-Si alloy fibrous nanoparticles aggregate is explained by the nucleation and subsequent condensation of vapor in the plasma plume during irradiation and expulsion of molten material due to high plasma pressure
Investigation of Mitochondrial Dysfunction by Sequential Microplate-Based Respiration Measurements from Intact and Permeabilized Neurons
Mitochondrial dysfunction is a component of many neurodegenerative conditions. Measurement of oxygen consumption from intact neurons enables evaluation of mitochondrial bioenergetics under conditions that are more physiologically realistic compared to isolated mitochondria. However, mechanistic analysis of mitochondrial function in cells is complicated by changing energy demands and lack of substrate control. Here we describe a technique for sequentially measuring respiration from intact and saponin-permeabilized cortical neurons on single microplates. This technique allows control of substrates to individual electron transport chain complexes following permeabilization, as well as side-by-side comparisons to intact cells. To illustrate the utility of the technique, we demonstrate that inhibition of respiration by the drug KB-R7943 in intact neurons is relieved by delivery of the complex II substrate succinate, but not by complex I substrates, via acute saponin permeabilization. In contrast, methyl succinate, a putative cell permeable complex II substrate, failed to rescue respiration in intact neurons and was a poor complex II substrate in permeabilized cells. Sequential measurements of intact and permeabilized cell respiration should be particularly useful for evaluating indirect mitochondrial toxicity due to drugs or cellular signaling events which cannot be readily studied using isolated mitochondria
Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences
<p>Abstract</p> <p>Background</p> <p>Knowledge of structural class is used by numerous methods for identification of structural/functional characteristics of proteins and could be used for the detection of remote homologues, particularly for chains that share twilight-zone similarity. In contrast to existing sequence-based structural class predictors, which target four major classes and which are designed for high identity sequences, we predict seven classes from sequences that share twilight-zone identity with the training sequences.</p> <p>Results</p> <p>The proposed MODular Approach to Structural class prediction (MODAS) method is unique as it allows for selection of any subset of the classes. MODAS is also the first to utilize a novel, custom-built feature-based sequence representation that combines evolutionary profiles and predicted secondary structure. The features quantify information relevant to the definition of the classes including conservation of residues and arrangement and number of helix/strand segments. Our comprehensive design considers 8 feature selection methods and 4 classifiers to develop Support Vector Machine-based classifiers that are tailored for each of the seven classes. Tests on 5 twilight-zone and 1 high-similarity benchmark datasets and comparison with over two dozens of modern competing predictors show that MODAS provides the best overall accuracy that ranges between 80% and 96.7% (83.5% for the twilight-zone datasets), depending on the dataset. This translates into 19% and 8% error rate reduction when compared against the best performing competing method on two largest datasets. The proposed predictor provides accurate predictions at 58% accuracy for membrane proteins class, which is not considered by majority of existing methods, in spite that this class accounts for only 2% of the data. Our predictive model is analyzed to demonstrate how and why the input features are associated with the corresponding classes.</p> <p>Conclusions</p> <p>The improved predictions stem from the novel features that express collocation of the secondary structure segments in the protein sequence and that combine evolutionary and secondary structure information. Our work demonstrates that conservation and arrangement of the secondary structure segments predicted along the protein chain can successfully predict structural classes which are defined based on the spatial arrangement of the secondary structures. A web server is available at <url>http://biomine.ece.ualberta.ca/MODAS/</url>.</p
Development of diabetes-specific quality of life module to be in conjunction with the World Health Organization quality of life scale brief version (WHOQOL-BREF)
Does Density Ratio Significantly Affect Turbulent Flame Speed?
In order to experimentally study whether or not the density ratio sigma substantially affects flame displacement speed at low and moderate turbulent intensities, two stoichiometric methane/oxygen/nitrogen mixtures characterized by the same laminar flame speed S-L = 0.36 m/s, but substantially different sigma were designed using (i) preheating from T-u = 298 to 423 K in order to increase S (L) , but to decrease sigma, and (ii) dilution with nitrogen in order to further decrease sigma and to reduce S (L) back to the initial value. As a result, the density ratio was reduced from 7.52 to 4.95. In both reference and preheated/diluted cases, direct images of statistically spherical laminar and turbulent flames that expanded after spark ignition in the center of a large 3D cruciform burner were recorded and processed in order to evaluate the mean flame radius and flame displacement speed with respect to unburned gas. The use of two counter-rotating fans and perforated plates for near-isotropic turbulence generation allowed us to vary the rms turbulent velocity by changing the fan frequency. In this study, was varied from 0.14 to 1.39 m/s. For each set of initial conditions (two different mixture compositions, two different temperatures T-u , and six different , five (respectively, three) statistically equivalent runs were performed in turbulent (respectively, laminar) environment. The obtained experimental data do not show any significant effect of the density ratio on S-t . Moreover, the flame displacement speeds measured at u\u27/S-L = 0.4 are close to the laminar flame speeds in all investigated cases. These results imply, in particular, a minor effect of the density ratio on flame displacement speed in spark ignition engines and support simulations of the engine combustion using models that (i) do not allow for effects of the density ratio on S-t and (ii) have been validated against experimental data obtained under the room conditions, i.e. at higher sigma. DELGAYED RG, 1987, PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICA
Measurement of BB angular correlations based on secondary vertex reconstruction at ps = 7 TeV
35 páginas, 8 figuras, 2 tablas.-- Open Access: This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License.-- CMS Collaboration: et al.A measurement of the angular correlations between beauty and anti-beauty
hadrons (BB) produced in pp collisions at a centre-of-mass energy of 7 TeV at the CERN
LHC is presented, probing for the rst time the region of small angular separation. The
B hadrons are identi ed by the presence of displaced secondary vertices from their decays.
The B hadron angular separation is reconstructed from the decay vertices and the primaryinteraction
vertex. The di erential BB production cross section, measured from a data
sample collected by CMS and corresponding to an integrated luminosity of 3:1 pb-1, shows
that a sizable fraction of the BBpairs are produced with small opening angles. These
studies provide a test of QCD and further insight into the dynamics of bb production.Acknowledge support from: FMSR (Austria);
FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES
(Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES
(Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland,
ME, andHIP (Finland); CEAand CNRS/IN2P3 (France); BMBF, DFG, and HGF
(Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM
(Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV,
CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland);
FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE
(Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland);
NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE
and NSF (USA).Peer reviewe
- …
