103 research outputs found

    Structural insight into molecular mechanism of poly (ethylene terephthalate) degradation

    Get PDF
    Plastics, including poly(ethylene terephthalate) (PET), possess many desirable characteristics and thus are widely used in daily life. However, non-biodegradability, once thought to be an advantage offered by plastics, is causing major environmental problem. Recently, a PET-degrading bacterium, Ideonella sakaiensis, was identified and suggested for possible use in degradation and/or recycling of PET. However, the molecular mechanism of PET degradation is not known. Here we report the crystal structure of I. sakaiensis PETase (IsPETase) at 1.5 angstrom resolution. IsPETase has a Ser-His-Asp catalytic triad at its active site and contains an optimal substrate binding site to accommodate four monohydroxyethyl terephthalate (MHET) moieties of PET. Based on structural and site-directed mutagenesis experiments, the detailed process of PET degradation into MHET, terephthalic acid, and ethylene glycol is suggested. Moreover, other PETase candidates potentially having high PET-degrading activities are suggested based on phylogenetic tree analysis of 69 PETase-like proteins

    Genetic structure of sigmodontine rodents (Cricetidae) along an altitudinal gradient of the Atlantic Rain Forest in southern Brazil

    Get PDF
    The population genetic structure of two sympatric species of sigmodontine rodents (Oligoryzomys nigripes and Euryoryzomys russatus) was examined for mitochondrial DNA (mtDNA) sequence haplotypes of the control region. Samples were taken from three localities in the Atlantic Rain Forest in southern Brazil, along an altitudinal gradient with different types of habitat. In both species there was no genetic structure throughout their distribution, although levels of genetic variability and gene flow were high

    Odorant binding proteins : a biotechnological tool for odour control

    Get PDF
    The application of an odorant binding protein for odour control and fragrance delayed release from a textile surface was first explored in this work. Pig OBP-1 gene was cloned and expressed in Escherichia coli , and the purified protein was biochemically characterized. The IC50 values(concentrations of competitor that caused a decay of fluorescence to half-maximal intensity) were determined for four distinct fragrances, namely, citronellol, benzyl benzoate,citronellyl valerate and ethyl valerate. The results showed a strong binding of citronellyl valerate,citronellol and benzyl benzoate to the recombinant protein, while ethyl valerate displayed weaker binding. Cationized cotton substrates were coated with porcine odorant binding protein and tested for their capacity to retain citronellol and to mask the smell of cigarette smoke. The immobilized protein delayed the release of citronellol when compared to the untreated cotton. According to a blind evaluation of 30 assessors, the smell of cigarette smoke, trapped onto the fabrics’ surface, was successfully attenuated by porcine odorant binding protein (more than 60 % identified the weakest smell intensity after protein exposure compared to β-cyclodextrin-treated and untreated cotton fabrics). This work demonstrated that porcine odorant binding protein can be an efficient solution to prevent and/orremove unpleasant odours trapped on the large surface of textiles. Its intrinsic properties make odorant binding proteins excellent candidates for controlled release systems which constitute a new application for this class of proteins.This work was co-funded by the European Social Fund through the management authority POPH and FCT. The authors Carla Silva and Teresa Matama would like to acknowledge their post-doctoral fellowships: SFRH/BPD/46515/2008 and SFRH/BPD/47555/2008, respectively

    A monoclonal antibody raised against bacterially expressed MPV17 sequences shows peroxisomal, endosomal and lysosomal localisation in U2OS cells

    Get PDF
    Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans. Loss of function in mice leads to glomerulosclerosis and sensineural deafness accompanied with mitochondrial DNA depletion. Mutations in the yeast homolog Sym1, and in the zebra fish homolog tra cause interesting, but not obviously related phenotypes, although the human gene can complement the yeast Sym1 mutation. The MPV17 protein is a hydrophobic membrane protein of 176 amino acids and unknown function. Initially localised in murine peroxisomes, it was later reported to be a mitochondrial inner membrane protein in humans and in yeast. To resolve this contradiction we tested two new mouse monoclonal antibodies directed against the human MPV17 protein in Western blots and immunohistochemistry on human U2OS cells. One of these monoclonal antibodies showed specific reactivity to a protein of 20 kD absent in MPV17 negative mouse cells. Immunofluorescence studies revealed colocalisation with peroxisomal, endosomal and lysosomal markers, but not with mitochondria. This data reveal a novel connection between a possible peroxisomal/endosomal/lysosomal function and mitochondrial DNA depletion

    Characterizing early drug resistance-related events using geometric ensembles from HIV protease dynamics:

    Get PDF
    The use of antiretrovirals (ARVs) has drastically improved the life quality and expectancy of HIV patients since their introduction in health care. Several millions are still afflicted worldwide by HIV and ARV resistance is a constant concern for both healthcare practitioners and patients, as while treatment options are finite, the virus constantly adapts via complex mutation patterns to select for resistant strains under the pressure of drug treatment. The HIV protease is a crucial enzyme for viral maturation and has been a game changing drug target since the first application. Due to similarities in protease inhibitor designs, drug cross-resistance is not uncommon across ARVs of the same class

    Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues

    Get PDF
    This work was supported by the Leverhulme Trust (Grant number RL2012-025). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Current drugs to treat African sleeping sickness are inadequate and new therapies are urgently required. As part of a medicinal chemistry programme based upon the simplification of acetogenin-type ether scaffolds, we previously reported the promising trypanocidal activity of compound 1 , a bis-tetrahydropyran 1,4-triazole (B-THP-T) inhibitor. This study aims to identify the protein target(s) of this class of compound in Trypanosoma brucei to understand its mode of action and aid further structural optimisation. We used compound 3 , a diazirine- and alkyne-containing bi-functional photo-affinity probe analogue of our lead B-THP-T, compound 1 , to identify potential targets of our lead compound in the procyclic form T. brucei. Bi-functional compound 3 was UV cross-linked to its target(s) in vivo and biotin affinity or Cy5.5 reporter tags were subsequently appended by Cu(II)-catalysed azide-alkyne cycloaddition. The biotinylated protein adducts were isolated with streptavidin affinity beads and subsequent LC-MSMS identified the FoF1-ATP synthase (mitochondrial complex V) as a potential target. This target identification was confirmed using various different approaches. We show that (i) compound 1 decreases cellular ATP levels (ii) by inhibiting oxidative phosphorylation (iii) at the FoF1-ATP synthase. Furthermore, the use of GFP-PTP-tagged subunits of the FoF1-ATP synthase, shows that our compounds bind specifically to both the α- and β-subunits of the ATP synthase. The FoF1-ATP synthase is a target of our simplified acetogenin-type analogues. This mitochondrial complex is essential in both procyclic and bloodstream forms of T. brucei and its identification as our target will enable further inhibitor optimisation towards future drug discovery. Furthermore, the photo-affinity labeling technique described here can be readily applied to other drugs of unknown targets to identify their modes of action and facilitate more broadly therapeutic drug design in any pathogen or disease model.Publisher PDFPeer reviewe

    Ecology and Transmission of Buruli Ulcer Disease: A Systematic Review

    Get PDF
    Buruli ulcer is a neglected emerging disease that has recently been reported in some countries as the second most frequent mycobacterial disease in humans after tuberculosis. Cases have been reported from at least 32 countries in Africa (mainly west), Australia, Southeast Asia, China, Central and South America, and the Western Pacific. Large lesions often result in scarring, contractual deformities, amputations, and disabilities, and in Africa, most cases of the disease occur in children between the ages of 4–15 years. This environmental mycobacterium, Mycobacterium ulcerans, is found in communities associated with rivers, swamps, wetlands, and human-linked changes in the aquatic environment, particularly those created as a result of environmental disturbance such as deforestation, dam construction, and agriculture. Buruli ulcer disease is often referred to as the “mysterious disease” because the mode of transmission remains unclear, although several hypotheses have been proposed. The above review reveals that various routes of transmission may occur, varying amongst epidemiological setting and geographic region, and that there may be some role for living agents as reservoirs and as vectors of M. ulcerans, in particular aquatic insects, adult mosquitoes or other biting arthropods. We discuss traditional and non-traditional methods for indicting the roles of living agents as biologically significant reservoirs and/or vectors of pathogens, and suggest an intellectual framework for establishing criteria for transmission. The application of these criteria to the transmission of M. ulcerans presents a significant challenge

    Neoadjuvant chemotherapy prior to preoperative chemoradiation or radiation in rectal cancer: should we be more cautious?

    Get PDF
    Neoadjuvant chemotherapy (NACT) is a term originally used to describe the administration of chemotherapy preoperatively before surgery. The original rationale for administering NACT or so-called induction chemotherapy to shrink or downstage a locally advanced tumour, and thereby facilitate more effective local treatment with surgery or radiotherapy, has been extended with the introduction of more effective combinations of chemotherapy to include reducing the risks of metastatic disease. It seems logical that survival could be lengthened, or organ preservation rates increased in resectable tumours by NACT. In rectal cancer NACT is being increasingly used in locally advanced and nonmetastatic unresectable tumours. Randomised studies in advanced colorectal cancer show high response rates to combination cytotoxic therapy. This evidence of efficacy coupled with the introduction of novel molecular targeted therapies (such as Bevacizumab and Cetuximab), and long waiting times for radiotherapy have rekindled an interest in delivering NACT in locally advanced rectal cancer. In contrast, this enthusiasm is currently waning in other sites such as head and neck and nasopharynx cancer where traditionally NACT has been used. So, is NACT in rectal cancer a real advance or just history repeating itself? In this review, we aimed to explore the advantages and disadvantages of the separate approaches of neoadjuvant, concurrent and consolidation chemotherapy in locally advanced rectal cancer, drawing on theoretical principles, preclinical studies and clinical experience both in rectal cancer and other disease sites. Neoadjuvant chemotherapy may improve outcome in terms of disease-free or overall survival in selected groups in some disease sites, but this strategy has not been shown to be associated with better outcomes than postoperative adjuvant chemotherapy. In particular, there is insufficient data in rectal cancer. The evidence for benefit is strongest when NACT is administered before surgical resection. In contrast, the data in favour of NACT before radiation or chemoradiation (CRT) is inconclusive, despite the suggestion that response to induction chemotherapy can predict response to subsequent radiotherapy. The observation that spectacular responses to chemotherapy before radical radiotherapy did not result in improved survival, was noted 25 years ago. However, multiple trials in head and neck cancer, nasopharyngeal cancer, non-small-cell lung cancer, small-cell lung cancer and cervical cancer do not support the routine use of NACT either as an alternative, or as additional benefit to CRT. The addition of NACT does not appear to enhance local control over concurrent CRT or radiotherapy alone. Neoadjuvant chemotherapy before CRT or radiation should be used with caution, and only in the context of clinical trials. The evidence base suggests that concurrent CRT with early positioning of radiotherapy appears the best option for patients with locally advanced rectal cancer and in all disease sites where radiation is the primary local therapy

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore