15 research outputs found
Vibrational dynamics of inclusion complexes by Raman scattering: an experimental and numerical study
Long range molecular dynamics study of regulation of eukaryotic glucosamine-6-phosphate synthase activity by UDP-GlcNAc
Glucosamine-6-phosphate (GlcN-6-P) synthase catalyses the first and practically irreversible step in hexosamine metabolism. The final product of this pathway, uridine 5’ diphospho N-acetyl-D-glucosamine (UDP-GlcNAc), is an essential substrate for assembly of bacterial and fungal cell walls. Moreover, the enzyme is involved in phenomenon of hexosamine induced insulin resistance in type II diabetes, which makes it a potential target for antifungal, antibacterial and antidiabetic therapy. The crystal structure of the isomerase domain of GlcN-6-P synthase from human pathogenic fungus Candida albicans, in complex with UDP-GlcNAc has been solved recently but it has not revealed the molecular mechanism of inhibition taking place under UDP-GlcNAc influence, the unique feature of the eukaryotic enzyme. UDP-GlcNAc is a physiological inhibitor of GlcN-6-P synthase, binding about 1 nm away from the active site of the enzyme. In the present work, comparative molecular dynamics simulations of the free and UDP-GlcNAc-bounded structures of GlcN-6-P synthase have been performed. The aim was to complete static X-ray structural data and detect possible changes in the dynamics of the two structures. Results of the simulation studies demonstrated higher mobility of the free structure when compared to the liganded one. Several amino acid residues were identified, flexibility of which is strongly affected upon UDP-GlcNAc binding. Importantly, the most fixed residues are those related to the inhibitor binding process and to the catalytic reaction. The obtained results constitute an important step toward understanding of mechanism of GlcN-6-P synthase inhibition by UDP-GlcNAc molecule
Visualization of Early Events in Acetic Acid Denaturation of HIV-1 Protease: A Molecular Dynamics Study
Protein denaturation plays a crucial role in cellular processes. In this study, denaturation of HIV-1 Protease (PR) was investigated by all-atom MD simulations in explicit solvent. The PR dimer and monomer were simulated separately in 9 M acetic acid (9 M AcOH) solution and water to study the denaturation process of PR in acetic acid environment. Direct visualization of the denaturation dynamics that is readily available from such simulations has been presented. Our simulations in 9 M AcOH reveal that the PR denaturation begins by separation of dimer into intact monomers and it is only after this separation that the monomer units start denaturing. The denaturation of the monomers is flagged off by the loss of crucial interactions between the α-helix at C-terminal and surrounding β-strands. This causes the structure to transit from the equilibrium dynamics to random non-equilibrating dynamics. Residence time calculations indicate that denaturation occurs via direct interaction of the acetic acid molecules with certain regions of the protein in 9 M AcOH. All these observations have helped to decipher a picture of the early events in acetic acid denaturation of PR and have illustrated that the α-helix and the β-sheet at the C-terminus of a native and functional PR dimer should maintain both the stability and the function of the enzyme and thus present newer targets for blocking PR function
Structure of a lectin from Canavalia gladiata seeds: new structural insights for old molecules
<p>Abstract</p> <p>Background</p> <p>Lectins are mainly described as simple carbohydrate-binding proteins. Previous studies have tried to identify other binding sites, which possible recognize plant hormones, secondary metabolites, and isolated amino acid residues. We report the crystal structure of a lectin isolated from <it>Canavalia gladiata </it>seeds (CGL), describing a new binding pocket, which may be related to pathogen resistance activity in ConA-like lectins; a site where a non-protein amino-acid, α-aminobutyric acid (Abu), is bound.</p> <p>Results</p> <p>The overall structure of native CGL and complexed with α-methyl-mannoside and Abu have been refined at 2.3 Å and 2.31 Å resolution, respectively. Analysis of the electron density maps of the CGL structure shows clearly the presence of Abu, which was confirmed by mass spectrometry.</p> <p>Conclusion</p> <p>The presence of Abu in a plant lectin structure strongly indicates the ability of lectins on carrying secondary metabolites. Comparison of the amino acids composing the site with other legume lectins revealed that this site is conserved, providing an evidence of the biological relevance of this site. This new action of lectins strengthens their role in defense mechanisms in plants.</p
New insight into the discrimination between omeprazole enantiomers by cyclodextrins in aqueous solution
We report results regarding the use of 1H-NMR spectroscopy in the study of the conformational behaviour and optical activity of omeprazole. Changes in the chemical shifts of chosen atoms reveal that the conformational behaviour of omeprazole is temperature and pH sensitive. Separation and identification of omeprazole enantiomers in the presence of natural and derivative cyclodextrins, such as ß-cyclodextrin (ßCD) and methyl-ß-cyclodextrin (MßCD) are achieved using 1H-NMR spectroscopy, with information from molecular dynamics simulation. This work shows that ßCD includes preferentially R-(–)-omeprazole, acting as a chiral selector. This discrimination of omeprazole enantiomers by cyclodextrins allows development of pharmaceutical formulations with a better bioavailability profile
Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin
AB(5) toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB(5) toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin's receptor is generated by metabolic incorporation of an exogenous factor derived from food.Emma Byres, Adrienne W. Paton, James C. Paton, Jonas C. Löfling, David F. Smith, Matthew C. J. Wilce, Ursula M. Talbot, Damien C. Chong, Hai Yu, Shengshu Huang, Xi Chen, Nissi M. Varki, Ajit Varki, Jamie Rossjohn & Travis Beddo
Cystatin F is a cathepsin C-directed protease inhibitor regulated by proteolysis
Cystatins are a family of naturally occurring cysteine protease inhibitors, yet the target proteases and biological processes they regulate are poorly understood. Cystatin F is expressed selectively in immune cells and is the only cystatin to be synthesised as an inactive disulphide-linked dimeric precursor. Here, we show that a major target of cystatin F in different immune cell types is the aminopeptidase cathepsin C, which regulates the activation of effector serine proteases in T cells, natural killer cells, neutrophils and mast cells. Surprisingly, recombinant cystatin F was unable to inhibit cathepsin C in vitro even though overexpression of cystatin F suppressed cellular cathepsin C activity. We predicted, using structural models, that an N-terminal processing event would be necessary before cystatin F can engage cathepsin C and we show that the intracellular form of cystatin F indeed has a precise N-terminal truncation that creates a cathepsin C inhibitor. Thus, cystatin F is a latent protease inhibitor itself regulated by proteolysis in the endocytic pathway. By targeting cathepsin C, it may regulate diverse immune cell effector functions