2,080 research outputs found
DonorâDerived Engineered Microvessels for Cardiovascular Risk Stratification of Patients with Kidney Failure
Cardiovascular disease is the cause of death in â50% of hemodialysis patients. Accumulation of uremic solutes in systemic circulation is thought to be a key driver of the endothelial dysfunction that underlies elevated cardiovascular events. A challenge in understanding the mechanisms relating chronic kidney disease to cardiovascular disease is the lack of in vitro models that allow screening of the effects of the uremic environment on the endothelium. Here, a method is described for microfabrication of human blood vessels from donor cells and perfused with donor serum. The resulting donor-derived microvessels are used to quantify vascular permeability, a hallmark of endothelial dysfunction, in response to serum spiked with pathophysiological levels of indoxyl sulfate, and in response to serum from patients with chronic kidney disease and from uremic pigs. The uremic environment has pronounced effects on microvascular integrity as demonstrated by irregular cell-cell junctions and increased permeability in comparison to cell culture media and healthy serum. Moreover, the engineered microvessels demonstrate an increase in sensitivity compared to traditional 2D assays. Thus, the devices and the methods presented here have the potential to be utilized to risk stratify and to direct personalized treatments for patients with chronic kidney disease
Reduction of seafood processing wastewater using technologies enhanced by swimâbed technology
The increasing growth of the seafood processing industries considerably requires more industrial process activities and water consumption. It is estimated that approximately 10â40 m3 of wastewater is generated from those industries for processing one-tonne of raw materials. Due to limitations and regulations in natural resources utilization, a suitable and systematic wastewater treatment plant is very important to meet rigorous discharge standards. As a result of food waste biodegradability, the biological treatment and some extent of swim-bed technology, including a novel acryl-ïŹbre (bioïŹlm) material might be used effectively to meet the efïŹuent discharge criteria. This chapter aims to develop understanding on current problems and production of the seafood wastewater regarding treatment efïŹciency and methods of treatment
Suppression of Cellular Transformation by Poly (A) Binding Protein Interacting Protein 2 (Paip2)
Controlling translation is crucial for the homeostasis of a cell. Its deregulation can facilitate the development and progression of many diseases including cancer. Poly (A) binding protein interacting protein 2 (Paip2) inhibits efficient initiation of translation by impairing formation of the necessary closed loop of mRNA. The over production of Paip2 in the presence of a constitutively active form of hRasV12 can reduce colony formation in a semi-solid matrix and focus formation on a cell monolayer. The ability of Paip2 to bind to Pabp is required to suppress the transformed phenotype mediated by hRasV12. These observations indicate that Paip2 is able to function as a tumor suppressor
Impact of movement training on upper limb motor strategies in persons with shoulder impingement syndrome
<p>Abstract</p> <p>Background</p> <p>Movement deficits, such as changes in the magnitude of scapulohumeral and scapulathoracic muscle activations or perturbations in the kinematics of the glenohumeral, sternoclavicular and scapulothoracic joints, have been observed in people with shoulder impingement syndrome. Movement training has been suggested as a mean to contribute to the improvement of the motor performance in persons with musculoskeletal impairments. However, the impact of movement training on the movement deficits of persons with shoulder impingement syndrome is still unknown. The aim of this study was to evaluate the short-term effects of supervised movement training with feedback on the motor strategies of persons with shoulder impingement syndrome.</p> <p>Methods</p> <p>Thirty-three subjects with shoulder impingement were recruited. They were involved in two visits, one day apart. During the first visit, supervised movement training with feedback was performed. The upper limb motor strategies were evaluated before, during, immediately after and 24 hours after movement training. They were characterized during reaching movements in the frontal plane by EMG activity of seven shoulder muscles and total excursion and final position of the wrist, elbow, shoulder, clavicle and trunk. Movement training consisted of reaching movements performed under the supervision of a physiotherapist who gave feedback aimed at restoring shoulder movements. One-way repeated measures ANOVAs were run to analyze the effect of movement training.</p> <p>Results</p> <p>During, immediately after and 24 hours after movement training with feedback, the EMG activity was significantly decreased compared to the baseline level. For the kinematics, total joint excursion of the trunk and final joint position of the trunk, shoulder and clavicle were significantly improved during and immediately after training compared to baseline. Twenty-four hours after supervised movement training, the kinematics of trunk, shoulder and clavicle were back to the baseline level.</p> <p>Conclusion</p> <p>Movement training with feedback brought changes in motor strategies and improved temporarily some aspects of the kinematics. However, one training session was not enough to bring permanent improvement in the kinematic patterns. These results demonstrate the potential of movement training in the rehabilitation of movement deficits associated with shoulder impingement syndrome.</p
Frozen and Invariant Quantum Discord under Local Dephasing Noise
In this chapter, we intend to explore and review some remarkable dynamical
properties of quantum discord under various different open quantum system
models. Specifically, our discussion will include several concepts connected to
the phenomena of time invariant and frozen quantum discord. Furthermore, we
will elaborate on the relation of these two phenomena to the non-Markovian
features of the open system dynamics and to the usage of dynamical decoupling
protocols.Comment: 29 pages, 8 figure
Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts
We provide a tight security proof for an IND-CCA Ring-LWE based Key Encapsulation Mechanism that is derived from a generic construction of Dent (IMA Cryptography and Coding, 2003). Such a tight reduction is not known for the generic construction. The resulting scheme has shorter ciphertexts than can be achieved with other generic constructions of Dent or by using the well-known Fujisaki-Okamoto constructions (PKC 1999, Crypto 1999). Our tight security proof is obtained by reducing to the security of the underlying Ring-LWE problem, avoiding an intermediate reduction to a CPA-secure encryption scheme. The proof technique maybe of interest for other schemes based on LWE and Ring-LWE
Revisiting the Glick-Rogoff Current Account Model: An Application to the Current Accounts of BRICS Countries
Understanding what drives the changes in current accounts is one of the most important macroeconomic issues for developing countries. Excessive surpluses in current accounts can trigger trade wars, and excessive deficits in current accounts can, on the other hand, induce currency crises. The Glick-Rogoff (1995, Journal of Monetary Economics) model, which emphasizes productivity shocks at home and in the world, fit well with developed economies in the 1970s and 1980s. However, the Glick-Rogoff model fits poorly when it is applied to fast-growing BRICS countries for the period including the global financial crisis. We conclude that different mechanisms of current accounts work for developed and developing countries
An overview of anti-diabetic plants used in Gabon: Pharmacology and Toxicology
© 2017 Elsevier B.V. All rights reserved.Ethnopharmacological relevance: The management of diabetes mellitus management in African communities, especially in Gabon, is not well established as more than 60% of population rely on traditional treatments as primary healthcare. The aim of this review was to collect and present the scientific evidence for the use of medicinal plants that are in currect by Gabonese traditional healers to manage diabetes or hyperglycaemia based here on the pharmacological and toxicological profiles of plants with anti-diabetic activity. There are presented in order to promote their therapeutic value, ensure a safer use by population and provide some bases for further study on high potential plants reviewed. Materials and methods: Ethnobotanical studies were sourced using databases such as Online Wiley library, Pubmed, Google Scholar, PROTA, books and unpublished data including Ph.D. and Master thesis, African and Asian journals. Keywords including âDiabetesâ âGabonâ âToxicityâ âConstituentsâ âhyperglycaemiaâ were used. Results: A total of 69 plants currently used in Gabon with potential anti-diabetic activity have been identified in the literature, all of which have been used in in vivo or in vitro studies. Most of the plants have been studied in human or animal models for their ability to reduce blood glucose, stimulate insulin secretion or inhibit carbohydrates enzymes. Active substances have been identified in 12 out of 69 plants outlined in this review, these include Allium cepa and Tabernanthe iboga. Only eight plants have their active substances tested for anti-diabetic activity and are suitables for further investigation. Toxicological data is scarce and is dose-related to the functional parameters of major organs such as kidney and liver. Conclusion: An in-depth understanding on the pharmacology and toxicology of Gabonese anti-diabetic plants is lacking yet there is a great scope for new treatments. With further research, the use of Gabonese anti-diabetic plants is important to ensure the safety of the diabetic patients in Gabon.Peer reviewedFinal Accepted Versio
- âŠ