208 research outputs found

    Evaluation of aldehyde dehydrogenase 1 promoter polymorphisms identified in human populations

    Get PDF
    BACKGROUND: Cytosolic aldehyde dehydrogenase, or ALDH1A1, functions in ethanol detoxification, metabolism of neurotransmitters, and synthesis of retinoic acid. Because the promoter region of a gene can influence gene expression, the ALDH1A1 promoter regions were studied to identify polymorphism, to assess their functional significance, and to determine whether they were associated with a risk for developing alcoholism. METHODS: Sequence analysis was performed in the promoter region by using Asian, Caucasian, and African American subjects. The resulting polymorphisms were assessed for frequency in Asian, Caucasian, Jewish, and African American populations and tested for associations with alcohol dependence in Asian and African American populations of alcoholics and controls. The functional significance of each polymorphism was determined through in vitro expression analysis by using HeLa and HepG2 cells. RESULTS: Two polymorphisms, a 17 base pair (bp) deletion (-416/-432) and a 3 bp insertion (-524), were discovered in the ALDH1A1 promoter region: ALDH1A1*2 and ALDH1A1*3, respectively. ALDH1A1*2 was observed at frequencies of 0.035, 0.023, 0.023, and 0.012 in the Asian, Caucasian, Jewish, and African American populations, respectively. ALDH1A1*3 was observed only in the African American population, at a frequency of 0.029. By using HeLa and HepG2 cells for in vitro expression, the activity of the luciferase reporter gene was significantly decreased after transient transfection of ALDH1A1*3-luciferase compared with the wild-type construct ALDH1A1*1-luciferase. In an African American population, a trend for higher frequencies of the ALDH1A1*2 and ALDH1A1*3 alleles was observed in a population of alcoholics (p = 0.03 and f = 0.12, respectively) compared with the control population. CONCLUSIONS: ALDH1A1*2 and ALDH1A1*3 may influence ALDH1A1 gene expression. Both ALDH1A1*2 and ALDH1A1*3 produce a trend in an African American population that may be indicative of an association with alcoholism; however, more samples are required to validate this observation. The underlying mechanisms contributing to these trends are still unknown

    Genomic screen for loci associated with tobacco usage in Mission Indians

    Get PDF
    BACKGROUND: The prevalence of tobacco usage in Native American adults and adolescents is higher than any other racial or ethnic group, yet biological risk and protective factors underlying tobacco use in this ethnic group remain unknown. A genome scan for loci associated with tobacco use phenotypes was performed with data collected from a community sample of Mission Indians residing in Southwest California. METHODS: A structured diagnostic interview was used to define two tobacco use phenotypes: 1) any regular tobacco usage (smoked daily for one month or more) and 2) persistent tobacco usage (smoked at least 10 cigarettes a day for more than one year). Heritability was determined and a linkage analysis was performed, using genotypes for a panel 791 microsatellite polymorphisms, for the two phenotypes using variance component methods implemented in SOLAR. RESULTS: Analyses of multipoint variance component LOD scores for the two tobacco use phenotypes revealed two scores that exceeded 2.0 for the regular use phenotype: one on chromosomes 6 and one on 8. Four other loci on chromosomes 1,7,13, and 22 were found with LOD scores between 1.0 and 1.5. Two loci of interest were found on chromosomes 1 and 4 for the persistent use phenotype with LOD scores between 1.3–1.5. Bivariate linkage analysis was conducted at the site on chromosome 4 for persistent tobacco use and an alcohol drinking severity phenotype previously identified at this site. The maximum LOD score for the bivariate analysis for the region was 3.4, however, there was insufficient power to exclude coincident linkage. CONCLUSION: While not providing evidence for linkage to specific chromosomal regions these results identify regions of interest in the genome in this Mission Indian population, for tobacco usage, some of which were identified in previous genome scans of non-native populations. Additionally, these data lend support for the hypothesis that cigarette smoking, alcohol dependence and other consumptive behaviors may share some common risk and/or protective factors in this Mission Indian population

    Parameterized Synthesis with Safety Properties

    Full text link
    Parameterized synthesis offers a solution to the problem of constructing correct and verified controllers for parameterized systems. Such systems occur naturally in practice (e.g., in the form of distributed protocols where the amount of processes is often unknown at design time and the protocol must work regardless of the number of processes). In this paper, we present a novel learning based approach to the synthesis of reactive controllers for parameterized systems from safety specifications. We use the framework of regular model checking to model the synthesis problem as an infinite-duration two-player game and show how one can utilize Angluin's well-known L* algorithm to learn correct-by-design controllers. This approach results in a synthesis procedure that is conceptually simpler than existing synthesis methods with a completeness guarantee, whenever a winning strategy can be expressed by a regular set. We have implemented our algorithm in a tool called L*-PSynth and have demonstrated its performance on a range of benchmarks, including robotic motion planning and distributed protocols. Despite the simplicity of L*-PSynth it competes well against (and in many cases even outperforms) the state-of-the-art tools for synthesizing parameterized systems.Comment: 18 page

    Numerical analysis of seepage–deformation in unsaturated soils

    Get PDF
    A coupled elastic–plastic finite element analysis based on simplified consolidation theory for unsaturated soils is used to investigate the coupling processes of water infiltration and deformation. By introducing a reduced suction and an elastic–plastic constitutive equation for the soil skeleton, the simplified consolidation theory for unsaturated soils is incorporated into an in-house finite element code. Using the proposed numerical method, the generation of pore water pressure and development of deformation can be simulated under evaporation or rainfall infiltration conditions. Through a parametric study and comparison with the test results, the proposed method is found to describe well the characteristics during water evaporation/infiltration into unsaturated soils. Finally, an unsaturated soil slope with water infiltration is analyzed in detail to investigate the development of the displacement and generation of pore water pressure

    Activity Dependent Protein Degradation Is Critical for the Formation and Stability of Fear Memory in the Amygdala

    Get PDF
    Protein degradation through the ubiquitin-proteasome system [UPS] plays a critical role in some forms of synaptic plasticity. However, its role in memory formation in the amygdala, a site critical for the formation of fear memories, currently remains unknown. Here we provide the first evidence that protein degradation through the UPS is critically engaged at amygdala synapses during memory formation and retrieval. Fear conditioning results in NMDA-dependent increases in degradation-specific polyubiquitination in the amygdala, targeting proteins involved in translational control and synaptic structure and blocking the degradation of these proteins significantly impairs long-term memory. Furthermore, retrieval of fear memory results in a second wave of NMDA-dependent polyubiquitination that targets proteins involved in translational silencing and synaptic structure and is critical for memory updating following recall. These results indicate that UPS-mediated protein degradation is a major regulator of synaptic plasticity necessary for the formation and stability of long-term memories at amygdala synapses

    Mitochondrial Damage in the Trabecular Meshwork Occurs Only in Primary Open-Angle Glaucoma and in Pseudoexfoliative Glaucoma

    Get PDF
    Open-angle glaucoma appears to be induced by the malfunction of the trabecular meshwork cells due to injury induced by oxidative damage and mitochondrial impairment. Here, we report that, in fact, we have detected mitochondrial damage only in primary open-angle glaucoma and pseudo-exfoliation glaucoma, among several glaucoma types compared.Mitochondrial damage was evaluated by analyzing the common mitochondrial DNA deletion by real-time PCR in trabecular meshwork specimens collected at surgery from glaucomatous patients and controls. Glaucomatous patients included 38 patients affected by various glaucoma types: primary open-angle, pigmented, juvenile, congenital, pseudoexfoliative, acute, neovascular, and chronic closed-angle glaucoma. As control samples, we used 16 specimens collected from glaucoma-free corneal donors. Only primary open-angle glaucoma (3.0-fold) and pseudoexfoliative glaucoma (6.3-fold) showed significant increases in the amount of mitochondrial DNA deletion. In all other cases, deletion was similar to controls.despite the fact that the trabecular meshwork is the most important tissue in the physiopathology of aqueous humor outflow in all glaucoma types, the present study provides new information regarding basic physiopathology of this tissue: only in primary open-angle and pseudoexfoliative glaucomas oxidative damage arising from mitochondrial failure play a role in the functional decay of trabecular meshwork

    A Randomized Controlled Study of Parent-assisted Children’s Friendship Training with Children having Autism Spectrum Disorders

    Get PDF
    This study evaluated Children’s Friendship Training (CFT), a manualized parent-assisted intervention to improve social skills among second to fifth grade children with autism spectrum disorders. Comparison was made with a delayed treatment control group (DTC). Targeted skills included conversational skills, peer entry skills, developing friendship networks, good sportsmanship, good host behavior during play dates, and handling teasing. At post-testing, the CFT group was superior to the DTC group on parent measures of social skill and play date behavior, and child measures of popularity and loneliness, At 3-month follow-up, parent measures showed significant improvement from baseline. Post-hoc analysis indicated more than 87% of children receiving CFT showed reliable change on at least one measure at post-test and 66.7% after 3 months follow-up

    Molecular genetics of nicotine dependence and abstinence: whole genome association using 520,000 SNPs

    Get PDF
    BACKGROUND: Classical genetic studies indicate that nicotine dependence is a substantially heritable complex disorder. Genetic vulnerabilities to nicotine dependence largely overlap with genetic vulnerabilities to dependence on other addictive substances. Successful abstinence from nicotine displays substantial heritable components as well. Some of the heritability for the ability to quit smoking appears to overlap with the genetics of nicotine dependence and some does not. We now report genome wide association studies of nicotine dependent individuals who were successful in abstaining from cigarette smoking, nicotine dependent individuals who were not successful in abstaining and ethnically-matched control subjects free from substantial lifetime use of any addictive substance. RESULTS: These data, and their comparison with data that we have previously obtained from comparisons of four other substance dependent vs control samples support two main ideas: 1) Single nucleotide polymorphisms (SNPs) whose allele frequencies distinguish nicotine-dependent from control individuals identify a set of genes that overlaps significantly with the set of genes that contain markers whose allelic frequencies distinguish the four other substance dependent vs control groups (p < 0.018). 2) SNPs whose allelic frequencies distinguish successful vs unsuccessful abstainers cluster in small genomic regions in ways that are highly unlikely to be due to chance (Monte Carlo p < 0.00001). CONCLUSION: These clustered SNPs nominate candidate genes for successful abstinence from smoking that are implicated in interesting functions: cell adhesion, enzymes, transcriptional regulators, neurotransmitters and receptors and regulation of DNA, RNA and proteins. As these observations are replicated, they will provide an increasingly-strong basis for understanding mechanisms of successful abstinence, for identifying individuals more or less likely to succeed in smoking cessation efforts and for tailoring therapies so that genotypes can help match smokers with the treatments that are most likely to benefit them
    corecore