30 research outputs found

    First L band detection of hot exozodiacal dust with VLTI/MATISSE

    Get PDF
    For the first time, we observed the emission of hot exozodiacal dust in L band. We used the new instrument MATISSE at the Very Large Telescope Interferometer to detect the hot dust around κ Tuc with a significance of 3σ to 6σ at wavelengths between 3.37 and 3.85μm and a dust-to-star flux ratio of 5 to 7 per cent⁠. We modelled the spectral energy distribution based on the new L band data alone and in combination with H band data published previously. In all cases we find 0.58μm grains of amorphous carbon to fit the κ Tuc observations the best, however, also nanometre or micrometre grains and other carbons or silicates reproduce the observations well. Since the H band data revealed a temporal variability, while our Lband data were taken at a different epoch, we combine them in different ways. Depending on the approach, the best fits are obtained for a narrow dust ring at a stellar distance in the 0.1–029 au range and thus with a temperature between 940 and 1430K⁠. Within the 1σ uncertainty dust location and temperature are confined to 0.032−1.18au and 600−2000K⁠

    Constraints on the structure of hot exozodiacal dust belts

    Get PDF
    Recent interferometric surveys of nearby main-sequence stars show a faint but significant near-infrared excess in roughly two dozen systems, i.e. around 10–30 per cent of stars surveyed. This excess is attributed to dust located in the immediate vicinity of the star, the origin of which is highly debated. We used previously published interferometric observations to constrain the properties and distribution of this hot dust. Considering both scattered radiation and thermal re-emission, we modelled the observed excess in nine of these systems. We find that grains have to be sufficiently absorbing to be consistent with the observed excess, while dielectric grains with pure silicate compositions fail to reproduce the observations. The dust should be located within ∼0.01–1 au from the star depending on its luminosity. Furthermore, we find a significant trend for the disc radius to increase with the stellar luminosity. The dust grains are determined to be below 0.2--0.5μm, but above 0.02--0.15μm in radius. The dust masses amount to (0.2–3.5) × 10⁻⁹ M⊕. The near-infrared excess is probably dominated by thermal re-emission, though a contribution of scattered light up to 35  per cent cannot be completely excluded. The polarization degree predicted by our models is always below 5  per cent, and for grains smaller than ∼0.2μm even below 1  per cent. We also modelled the observed near-infrared excess of another 10 systems with poorer data in the mid-infrared. The basic results for these systems appear qualitatively similar, yet the constraints on the dust location and the grain sizes are weaker

    The effect of sculpting planets on the steepness of debris-disc inner edges

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this record. DATA AVAILABILITY: The data underlying this article will be shared upon reasonable request to the corresponding author.Debris discs are our best means to probe the outer regions of planetary systems. Many studies assume that planets lie at the inner edges of debris discs, akin to Neptune and the Kuiper Belt, and use the disc morphologies to constrain those otherwise-undetectable planets. However, this produces a degeneracy in planet mass and semimajor axis. We investigate the effect of a sculpting planet on the radial surface-density profile at the disc inner edge, and show that this degeneracy can be broken by considering the steepness of the edge profile. Like previous studies, we show that a planet on a circular orbit ejects unstable debris and excites surviving material through mean-motion resonances. For a non-migrating, circular-orbit planet, in the case where collisions are negligible, the steepness of the disc inner edge depends on the planet-to-star mass ratio and the initial-disc excitation level. We provide a simple analytic model to infer planet properties from the steepness of ALMA-resolved disc edges. We also perform a collisional analysis, showing that a purely planet-sculpted disc would be distinguishable from a purely collisional disc and that, whilst collisions flatten planet-sculpted edges, they are unlikely to fully erase a planet’s signature. Finally, we apply our results to ALMA-resolved debris discs and show that, whilst many inner edges are too steep to be explained by collisions alone, they are too flat to arise through completed sculpting by non-migrating, circular-orbit planets. We discuss implications of this for the architectures, histories, and dynamics in the outer regions of planetary systems.Deutsche Forschungsgemeinschaft (DFG)Deutsche Forschungsgemeinschaft (DFG)Deutsche Forschungsgemeinschaft (DFG)Deutsche Forschungsgemeinschaft (DFG)European Union’s Horizon 2020Marie Skłodowska-Curie grantRoyal SocietyAlexander von Humboldt FoundationMinistry of Science, Technological Development, and Innovations of the Republic of SerbiaWarwick Prize Fellowshi

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    Dusty Planetary Systems

    Full text link
    Extensive photometric stellar surveys show that many main sequence stars show emission at infrared and longer wavelengths that is in excess of the stellar photosphere; this emission is thought to arise from circumstellar dust. The presence of dust disks is confirmed by spatially resolved imaging at infrared to millimeter wavelengths (tracing the dust thermal emission), and at optical to near infrared wavelengths (tracing the dust scattered light). Because the expected lifetime of these dust particles is much shorter than the age of the stars (>10 Myr), it is inferred that this solid material not primordial, i.e. the remaining from the placental cloud of gas and dust where the star was born, but instead is replenished by dust-producing planetesimals. These planetesimals are analogous to the asteroids, comets and Kuiper Belt objects (KBOs) in our Solar system that produce the interplanetary dust that gives rise to the zodiacal light (tracing the inner component of the Solar system debris disk). The presence of these "debris disks" around stars with a wide range of masses, luminosities, and metallicities, with and without binary companions, is evidence that planetesimal formation is a robust process that can take place under a wide range of conditions. This chapter is divided in two parts. Part I discusses how the study of the Solar system debris disk and the study of debris disks around other stars can help us learn about the formation, evolution and diversity of planetary systems by shedding light on the frequency and timing of planetesimal formation, the location and physical properties of the planetesimals, the presence of long-period planets, and the dynamical and collisional evolution of the system. Part II reviews the physical processes that affect dust particles in the gas-free environment of a debris disk and their effect on the dust particle size and spatial distribution.Comment: 68 pages, 25 figures. To be published in "Solar and Planetary Systems" (P. Kalas and L. French, Eds.), Volume 3 of the series "Planets, Stars and Stellar Systems" (T.D. Oswalt, Editor-in-chief), Springer 201

    MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice

    Get PDF
    Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases

    Circumstellar discs: What will be next?

    Full text link
    This prospective chapter gives our view on the evolution of the study of circumstellar discs within the next 20 years from both observational and theoretical sides. We first present the expected improvements in our knowledge of protoplanetary discs as for their masses, sizes, chemistry, the presence of planets as well as the evolutionary processes shaping these discs. We then explore the older debris disc stage and explain what will be learnt concerning their birth, the intrinsic links between these discs and planets, the hot dust and the gas detected around main sequence stars as well as discs around white dwarfs.Comment: invited review; comments welcome (32 pages

    Planetary Rings

    Full text link
    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally-confined arcs. Finally, every known ring system includes a substantial component of diffuse dusty rings. Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be published in "Planets, Stars and Stellar Systems", P. Kalas and L. French (eds.), Springer (http://refworks.springer.com/sss

    Dust spreading in debris discs: do small grains cling on to their birth environment?

    Get PDF
    Debris discs are dusty belts of planetesimals around main-sequence stars, similar to the asteroid and Kuiper belts in our solar system. The planetesimals cannot be observed directly, yet they produce detectable dust in mutual collisions. Observing the dust, we can try to infer properties of invisible planetesimals. Here we address the question of what is the best way to measure the location of outer planetesimal belts that encompass extrasolar planetary systems. A standard method is using resolved images at mm-wavelengths, which reveal dust grains with sizes comparable to the observational wavelength. Smaller grains seen in the infrared (IR) are subject to several non-gravitational forces that drag them away from their birth rings, and so may not closely trace the parent bodies. In this study, we examine whether imaging of debris discs at shorter wavelengths might enable determining the spatial location of the exo-Kuiper belts with sufficient accuracy. We find that around M-type stars the dust best visible in the mid-IR is efficiently displaced inward from their birth location by stellar winds, causing the discs to look more compact in mid-IR images than they actually are. However, around earlier-type stars where the majority of debris discs is found, discs are still the brightest at the birth ring location in the mid-IR regime. Thus, sensitive IR facilities with good angular resolution, such as MIRI on JWST, will enable tracing exo-Kuiper belts in nearby debris disc systems
    corecore