31 research outputs found
Using small molecules to facilitate exchange of bicarbonate and chloride anions across liposomal membranes
Bicarbonate is involved in a wide range of biological processes, which include respiration, regulation of intracellular pH and fertilization. In this study we use a combination of NMR spectroscopy and ion-selective electrode techniques to show that the natural product prodigiosin, a tripyrrolic molecule produced by microorganisms such as Streptomyces and Serratia, facilitates chloride/bicarbonate exchange (antiport) across liposomal membranes. Higher concentrations of simple synthetic molecules based on a 4,6-dihydroxyisophthalamide core are also shown to facilitate this antiport process. Although it is well known that proteins regulate Cl-/HCO3- exchange in cells, these results suggest that small molecules may also be able to regulate the concentration of these anions in biological systems
Hsp90 middle domain phosphorylation initiates a complex conformational program to recruit the ATPase-stimulating cochaperone Aha1
Complex conformational dynamics are essential for function of the dimeric molecular cha- perone heat shock protein 90 (Hsp90), including transient, ATP-biased N-domain dimer- ization that is necessary to attain ATPase competence. The intrinsic, but weak, ATP hydrolyzing activity of human Hsp90 is markedly enhanced by the co-chaperone Aha1. However, the cellular concentration of Aha1 is substoichiometric relative to Hsp90. Here we report that initial recruitment of this cochaperone to Hsp90 is markedly enhanced by phosphorylation of a highly conserved tyrosine (Y313 in Hsp90α) in the Hsp90 middle domain. Importantly, phosphomimetic mutation of Y313 promotes formation of a transient complex in which both N- and C-domains of Aha1 bind to distinct surfaces of the middle domains of opposing Hsp90 protomers prior to ATP-directed N-domain dimerization. Thus, Y313 represents a phosphorylation-sensitive conformational switch, engaged early after client loading, that affects both local and long-range conformational dynamics to facilitate initial recruitment of Aha1 to Hsp90
Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism
The Hsp90 chaperone is a central node of protein homeostasis activating a large number of diverse client proteins. Hsp90 functions as a molecular clamp that closes and opens in response to the binding and hydrolysis of ATP. Crystallographic studies define distinct conformational states of the mechanistic core implying structural changes that have not yet been observed in solution. Here, we engineered one-nanometer fluorescence probes based on photo-induced electron transfer into yeast Hsp90 to observe these motions. We found that the ATPase activity of the chaperone was reflected in the kinetics of specific structural rearrangements at remote positions that acted cooperatively. Nanosecond single-molecule fluorescence fluctuation analysis uncovered that critical structural elements that undergo rearrangement are mobile on a sub-millisecond time scale. We identified a two-step mechanism for lid closure over the nucleotide-binding pocket. The activating co-chaperone Aha1 mobilizes the lid of apo Hsp90, suggesting an early role in the catalytic cycle
Recommended from our members
Efficient, non‐toxic anion transport by synthetic carriers in cells and epithelia
Transmembrane anion transporters (anionophores) have potential for new modes of biological activity, including therapeutic applications. In particular they might replace the activity of defective anion channels in conditions such as cystic fibrosis. However, data on the biological effects of anionophores are scarce, and it remains uncertain whether such molecules are fundamentally toxic. Here, we report a biological study of an extensive series of powerful anion carriers. Fifteen anionophores were assayed in single cells by monitoring anion transport in real time through fluorescence emission from halide-sensitive yellow fluorescent protein. A bis-(p-nitrophenyl)ureidodecalin shows especially promising activity, including deliverability, potency and persistence. Electrophysiological tests show strong effects in epithelia, close to those of natural anion channels. Toxicity assays yield negative results in three cell lines, suggesting that promotion of anion transport may not be deleterious to cells. We therefore conclude that synthetic anion carriers are realistic candidates for further investigation as treatments for cystic fibrosis.info:eu-repo/semantics/publishe
A Chaperone Trap Contributes to the Onset of Cystic Fibrosis
Protein folding is the primary role of proteostasis network (PN) where chaperone interactions with client proteins determine the success or failure of the folding reaction in the cell. We now address how the Phe508 deletion in the NBD1 domain of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein responsible for cystic fibrosis (CF) impacts the binding of CFTR with cellular chaperones. We applied single ion reaction monitoring mass spectrometry (SRM-MS) to quantitatively characterize the stoichiometry of the heat shock proteins (Hsps) in CFTR folding intermediates in vivo and mapped the sites of interaction of the NBD1 domain of CFTR with Hsp90 in vitro. Unlike folding of WT-CFTR, we now demonstrate the presence of ΔF508-CFTR in a stalled folding intermediate in stoichiometric association with the core Hsps 40, 70 and 90, referred to as a ‘chaperone trap’. Culturing cells at 30 C resulted in correction of ΔF508-CFTR trafficking and function, restoring the sub-stoichiometric association of core Hsps observed for WT-CFTR. These results support the interpretation that ΔF508-CFTR is restricted to a chaperone-bound folding intermediate, a state that may contribute to its loss of trafficking and increased targeting for degradation. We propose that stalled folding intermediates could define a critical proteostasis pathway branch-point(s) responsible for the loss of function in misfolding diseases as observed in CF
A fluorescent assay for chloride transport identifies a synthetic transporter with improved activity
Structure-activity relationships in cholapod anion carriers: enhanced transmembrane chloride transport through substituent tuning
Chloride transport by a series of steroid-based “cholapod” receptors/carriers was studied in vesicles. The principal method involved preincorporation of the cholapods in the vesicle membranes, and the use of lucigenin fluorescence quenching to detect inward-transported Cl(−). The results showed a partial correlation between anion affinity and transport activity, in that changes at the steroidal 7 and 12 positions affected both properties in concert. However, changes at the steroidal 3-position yielded irregular effects. Among the new steroids investigated the bis-p-nitrophenylthiourea 3 showed unprecedented activity, giving measurable transport through membranes with a transporter/lipid ratio of 1:250 000 (an average of <2 transporter molecules per vesicle). Increasing transporter lipophilicity had no effect, and positively charged steroids had low activity. The p-nitrophenyl monourea 25 showed modest but significant activity. Measurements using a second method, requiring the addition of transporters to preformed vesicle suspensions, implied that transporter delivery was problematic in some cases. A series of measurements employing membranes of different thicknesses provided further evidence that the cholapods act as mobile anion carriers