13 research outputs found

    Response of a Specialist Bat to the Loss of a Critical Resource

    Get PDF
    Human activities have negatively impacted many species, particularly those with unique traits that restrict their use of resources and conditions to specific habitats. Unfortunately, few studies have been able to isolate the individual and combined effects of different threats on population persistence in a natural setting, since not all organisms can be associated with discrete habitat features occurring over limited spatial scales. We present the results of a field study that examines the short-term effects of roost loss in a specialist bat using a conspicuous, easily modified resource. We mimicked roost loss in the natural habitat and monitored individuals before and after the perturbation to determine patterns of resource use, spatial movements, and group stability. Our study focused on the disc-winged bat Thyroptera tricolor, a species highly morphologically specialized for roosting in the developing furled leaves of members of the order Zingiberales. We found that the number of species used for roosting increased, that home range size increased (before: mean 0.14±SD 0.08 ha; after: 0.73±0.68 ha), and that mean association indices decreased (before: 0.95±0.10; after: 0.77±0.18) once the roosting habitat was removed. These results demonstrate that the removal of roosting resources is associated with a decrease in roost-site preferences or selectivity, an increase in mobility of individuals, and a decrease in social cohesion. These responses may reduce fitness by potentially increasing energetic expenditure, predator exposure, and a decrease in cooperative interactions. Despite these potential risks, individuals never used roost-sites other than developing furled leaves, suggesting an extreme specialization that could ultimately jeopardize the long-term persistence of this species' local populations

    Matrix composition mediates effects of habitat fragmentation: a modelling study

    Get PDF
    Context Habitat loss has clear negative effects on biodiversity, but whether fragmentation per se (FPS), excluding habitat loss does is debatable. A contribution to this debate may be that many fragmentation studies tend to use landscapes of fragmented focal-habitat and a single vastly different species-poor intervening land cover (the matrix). Objectives How does matrix composition influence the effect of FPS on biodiversity?. Methods Using an individual-based model to investigate the effect of different configurations of the matrix on the relationship between FPS and biodiversity of the focal-habitat. We manipulated the number and quality of land cover types in the matrix, and their similarity to the focal-habitat. Results Extremely different matrix, caused an order of magnitude stronger effect of FPS on alpha- and gamma-diversity and beta-diversity to decline. Low FPS led to high gamma-diversity. Increasing FPS caused a dramatic decline to low diversity. In contrast landscapes with a more similar matrix had lower diversity under low FPS declining little with increasing FPS. Having few matrix types caused beta-diversity to decline in general compared to landscapes with a larger numbers. Conclusions The effects of FPS on biodiversity may change depending on the number of matrix types and their similarity to the focal-habitat. We recommend that fragmentation studies should consider a greater variety of landscapes to help assess in which cases FPS does not have a negative impact and allow better predictions of the impacts of fragmentation. We show the importance of having a diversity of matrix land cover types and improving the hospitability of the matrix for species dependent on the focal-habitat

    Ecological countermeasures to prevent pathogen spillover and subsequent pandemics.

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this record. Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.National Science FoundationDefense Advanced Research Projects AgencyNational Institutes of HealthNatural Environment Research Council (NERC)Cornell Center for Pandemic Prevention, Preparedness, and ResponseMontpellier Advanced Knowledge Institute On Transition

    The effect of fire severity on first-year seedling establishment in a Pinus canariensis forest on Tenerife, Canary Islands

    No full text
    The Canarian pine (Pinus canariensis) exhibits a striking combination of high adult resistance to fire and intermediate serotiny. Hence, the study of its post-fire regeneration can support valuable new insights about functional adaptations to fire. Here, we analyse the firstyear seedling establishment after fire in a P. canariensis forest on the northern slope of Tenerife, Canary Islands. The effects of fire severity and other explanatory variables on the seedling density recorded 9 months after fire were examined. We detected a clear unimodal relationship between seedling density and fire severity, with maximum regeneration associated with intermediate fire severity and no regeneration associated with very high crown damage. The results suggested that high severity fires may have caused the partial destruction of the aerial seed bank and/or the creation of unfavourable seedbed conditions for germination and seedling emergence. The density of large pine trees, reflecting seed availability, was the second most important factor explaining the distribution of seedlings. Cover of scorched needle litter on the ground correlated strongly and positively with pine seedling density and negatively with fire severity. The complete lack of regeneration at sites most strongly affected by fire does not represent a major threat for the stand recovery of the Canarian pine, due to the very high tree resistance to fire and the tremendous capacity of the Canarian pine to resprout after fire. The observed very high seedling densities at sites with intermediate fire impacts can probably be related to both the complete liberation of the seed bank (including seeds stored in serotinous cones) and favourable micro-environmental conditions for seed germination and seedling establishment
    corecore