234 research outputs found

    The Victims And Destroyers Of Respectability In Katherine Anne Porter's Short Fiction

    Get PDF
    Respectability is a subject that informs much of Katherine Anne Porter's short fiction

    Electron-Spin Excitation Coupling in an Electron Doped Copper Oxide Superconductor

    Full text link
    High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconductivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.Comment: 30 pages, 12 figures, supplementary information include

    ‘My face in someone else’s hands’: A qualitative study of medical tattooing in women with hair loss

    Get PDF
    The psychological and social impact of hair loss and its ongoing treatment can be considerable. Medical treatments are not always successful, and alternative treatments, such as medical tattooing, are growing in popularity. The aims of this study were to explore adults’ motivations, experiences, and self-perceived outcomes in relation to medical tattooing. Individual telephone interviews were conducted with 22 women from the United Kingdom aged 26–67 years who had undergone medical tattooing in the past 5 years related to hair loss. Interviews were transcribed and inductive thematic analysis was performed. Appearance concerns, loss of self-confidence/identity, and the practicalities of daily upkeep were cited as reasons for seeking a semi-permanent solution. Trust in the practitioner and the ongoing costs of tattoo maintenance were important considerations in participants' decision-making process and their overall satisfaction with treatment outcomes. Participants felt the emotional impact of hair loss and the subsequent need for appearance-restoring treatment remains unrecognised. This study provides insight into participants’ perceptions of an under-researched and unregulated but widely accessible treatment. Implications for the decision-making process are discussed, and suggestions for health professionals are offered

    Resonance in the electron-doped high-Tc superconductor Pr0.88LaCe0.12CuO(4-delta)

    Full text link
    In conventional superconductors, the interaction that pairs the electrons to form the superconducting state is mediated by lattice vibrations (phonons). In high-transition temperature (high-Tc) copper oxides, it is generally believed that magnetic excitations play a fundamental role in the superconducting mechanism because superconductivity occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Indeed, a sharp magnetic excitation termed "resonance" has been observed by neutron scattering in a number of hole-doped materials. The resonance is intimately related to superconductivity, and its interaction with charged quasi-particles observed by photoemission, optical conductivity, and tunneling suggests that it plays a similar role as phonons in conventional superconductors. However, the relevance of the resonance to high-Tc superconductivity has been in doubt because so far it has been found only in hole-doped materials. Here we report the discovery of the resonance in electron-doped superconducting Pr0.88LaCe0.12CuO(4-delta) (Tc = 24 K). We find that the resonance energy (Er) is proportional to Tc via Er = 5.8kBTc (kB is the Boltzmann's constant) for all high-Tc superconductors irrespective of electron- or hole-doping (Fig. 1e). Our results demonstrate that the resonance is a fundamental property of the superconducting copper oxides and therefore must play an essential role in the mechanism of superconductivity.Comment: PDF file with 4 Figure

    Different modes of state transitions determine pattern in the Phosphatidylinositide-Actin system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In a motile polarized cell the actin system is differentiated to allow protrusion at the front and retraction at the tail. This differentiation is linked to the phosphoinositide pattern in the plasma membrane. In the highly motile <it>Dictyostelium </it>cells studied here, the front is dominated by PI3-kinases producing PI(3,4,5)tris-phosphate (PIP3), the tail by the PI3-phosphatase PTEN that hydrolyses PIP3 to PI(4,5)bis-phosphate. To study de-novo cell polarization, we first depolymerized actin and subsequently recorded the spontaneous reorganization of actin patterns in relation to PTEN.</p> <p>Results</p> <p>In a transient stage of recovery from depolymerization, symmetric actin patterns alternate periodically with asymmetric ones. The switches to asymmetry coincide with the unilateral membrane-binding of PTEN. The modes of state transitions in the actin and PTEN systems differ. Transitions in the actin system propagate as waves that are initiated at single sites by the amplification of spontaneous fluctuations. In PTEN-null cells, these waves still propagate with normal speed but loose their regular periodicity. Membrane-binding of PTEN is induced at the border of a coherent PTEN-rich area in the form of expanding and regressing gradients.</p> <p>Conclusions</p> <p>The state transitions in actin organization and the reversible transition from cytoplasmic to membrane-bound PTEN are synchronized but their patterns differ. The transitions in actin organization are independent of PTEN, but when PTEN is present, they are coupled to periodic changes in the membrane-binding of this PIP3-degrading phosphatase. The PTEN oscillations are related to motility patterns of chemotaxing cells.</p

    Hydrodynamics of the VanA-type VanS histidine kinase: an extended solution conformation and first evidence for interactions with vancomycin

    Get PDF
    VanA-type resistance to glycopeptide antibiotics in clinical enterococci is regulated by the VanSARA two-component signal transduction system. The nature of the molecular ligand that is recognised by the VanSA sensory component has not hitherto been identified. Here we employ purified, intact and active VanSA membrane protein (henceforth referred to as VanS) in analytical ultracentrifugation experiments to study VanS oligomeric state and conformation in the absence and presence of vancomycin. A combination of sedimentation velocity and sedimentation equilibrium in the analytical ultracentrifuge (SEDFIT, SEDFIT-MSTAR and MULTISIG analysis) showed that VanS in the absence of the ligand is almost entirely monomeric (molar mass M = 45.7 kDa) in dilute aqueous solution with a trace amount of high molar mass material (M ~ 200 kDa). The sedimentation coefficient s suggests the monomer adopts an extended conformation in aqueous solution with an equivalent aspect ratio of ~ (12+2). In the presence of vancomycin over a 33% increase in the sedimentation coefficient is observed with the appearance of additional higher s components, demonstrating an interaction, an observation consistent with our circular dichroism measurements. The two possible causes of this increase in s – either a ligand induced dimerization and/or compaction of the monomer are considered

    The structure and dynamic properties of the complete histidine phosphotransfer domain of the chemotaxis specific histidine autokinase CheA from Thermotoga maritima

    Get PDF
    The bacterial histidine autokinase CheA contains a histidine phosphotransfer (Hpt) domain that accepts a phosphate from the catalytic domain and donates the phosphate to either target response regulator protein, CheY or CheB. The Hpt domain forms a helix-bundle structure with a conserved four-helix bundle motif and a variable fifth helix. Observation of two nearly equally populated conformations in the crystal structure of a Hpt domain fragment of CheA from Thermotoga maritima containing only the first four helices suggests more mobility in a tightly packed helix bundle structure than previously thought. In order to examine how the structures of Hpt domain homologs may differ from each other particularly in the conformation of the last helix, and whether an alternative conformation exists in the intact Hpt domain in solution, we have solved a high-resolution, solution structure of the CheA Hpt from T. maritima and characterized the backbone dynamics of this protein. The structure contains a four-helix bundle characteristic of histidine phosphotransfer domains. The position and orientation of the fifth helix resembles those in known Hpt domain crystal and solution structures in other histidine kinases. The alternative conformation that was reported in the crystal structure of the CheA Hpt from T. maritima missing the fifth helix is not detected in the solution structure, suggesting a role for the fifth helix in providing stabilizing forces to the overall structure
    • …
    corecore