962 research outputs found
A Cenozoic-style scenario for the end-Ordovician glaciation
The end-Ordovician was an enigmatic interval in the Phanerozoic, known for massive glaciation potentially at elevated CO2 levels, biogeochemical cycle disruptions recorded as large isotope anomalies and a devastating extinction event. Ice-sheet volumes claimed to be twice those of the Last Glacial Maximum paradoxically coincided with oceans as warm as today. Here we argue that some of these remarkable claims arise from undersampling of incomplete geological sections that led to apparent temporal correlations within the relatively coarse resolution capability of Palaeozoic biochronostratigraphy. We examine exceptionally complete sedimentary records from two, low and high, palaeolatitude settings. Their correlation framework reveals a Cenozoic-style scenario including three main glacial cycles and higher-order phenomena. This necessitates revision of mechanisms for the end-Ordovician events, as the first extinction is tied to an early phase of melting, not to initial cooling, and the largest ÎŽ13C excursion occurs during final deglaciation, not at the glacial apex
Constraint and diversification of developmental trajectories in cichlid facial morphologies
Background A major goal of evolutionary biology is to understand the origins of phenotypic diversity. Changes in development, for instance heterochrony, can be a potent source of phenotypic variation. On the other hand, development can also constrain the spectrum of phenotypes that can be produced. In order to understand these dual roles of development in evolution, we examined the developmental trajectory of a trait central to the extensive adaptive radiation of East African cichlid fishes: craniofacial adaptations that allow optimal exploitation of ecological niches. Specifically, we use geometric morphometric analysis to compare morphological ontogenies among six species of Lake Malawi cichlids (nâ\u3eâ500 individuals) that span a major ecomorphological axis. We further evaluate how modulation of Wnt signaling impacts the long-term developmental trajectory of facial development. Results We find that, despite drastic differences in adult craniofacial morphologies, there are general similarities in the path of craniofacial ontogeny among species, suggesting that natural selection is working within a conserved developmental program. However, we also detect species-specific differences in the timing, direction, and/or duration of particular developmental trajectories, including evidence of heterochrony. Previous work in cichlids and other systems suggests that species-specific differences in adult morphology are due to changes in molecular signaling pathways that regulate early craniofacial development. In support of this, we demonstrate that modulation of Wnt signaling at early stages can shift a developmental trajectory into morphospace normally occupied by another species. However, without sustained modulation, craniofacial shape can recover by juvenile stages. This underscores the idea that craniofacial development is robust and that adult head shapes are the product of many molecular changes acting over extended periods of development. Conclusions Our results are consistent with the hypothesis that development acts to both constrain and promote morphological diversity. They also illustrate the modular nature of the craniofacial skeleton and hence the ability of selection to act upon distinct anatomical features in an independent manner. We propose that trophic diversity among cichlids has been achieved via shifts in both specific (e.g., stage-specific changes in gene expression) and global (e.g., heterochrony) ontogenetic processes acting within a conserved developmental program
Tents, Chairs, Tacos, Kites, and Rods: Shapes and Plasmonic Properties of Singly Twinned Magnesium Nanoparticles
Nanostructures of some metals can sustain light-driven electron oscillations called localized surface plasmon resonances, or LSPRs, that give rise to absorption, scattering, and local electric field enhancement. Their resonant frequency is dictated by the nanoparticle (NP) shape and size, fueling much research geared toward discovery and control of new structures. LSPR properties also depend on composition; traditional, rare, and expensive noble metals (Ag, Au) are increasingly eclipsed by earth-abundant alternatives, with Mg being an exciting candidate capable of sustaining resonances across the ultraviolet, visible, and near-infrared spectral ranges. Here, we report numerical predictions and experimental verifications of a set of shapes based on Mg NPs displaying various twinning patterns including (101Ì
1), (101Ì
2), (101Ì
3), and (112Ì
1), that create tent-, chair-, taco-, and kite-shaped NPs, respectively. These are strikingly different from what is obtained for typical plasmonic metals because Mg crystallizes in a hexagonal close packed structure, as opposed to the cubic Al, Cu, Ag, and Au. A numerical survey of the optical response of the various structures, as well as the effect of size and aspect ratio, reveals their rich array of resonances, which are supported by single-particle optical scattering experiments. Further, corresponding numerical and experimental studies of the near-field plasmon distribution via scanning transmission electron microscopy electron-energy loss spectroscopy unravels a mode nature and distribution that are unlike those of either hexagonal plates or cylindrical rods. These NPs, made from earth-abundant Mg, provide interesting ways to control light at the nanoscale across the ultraviolet, visible, and near-infrared spectral ranges
Optical turbulence simulations at Mt Graham using the Meso-NH mode
The mesoscale model Meso-NH is used to simulate the optical turbulence at Mt
Graham (Arizona, USA), site of the Large Binocular Telescope. Measurements of
the CN2-profiles obtained with a generalized scidar from 41 nights are used to
calibrate and quantify the model's ability to reconstruct the optical
turbulence. The measurements are distributed over different periods of the
year, permitting us to study the model's performance in different seasons. A
statistical analysis of the simulations is performed for all the most important
astroclimatic parameters: the CN2-profiles, the seeing {\epsilon}, the
isoplanatic angle {\theta}0 and the wavefront coherence time {\tau}0. The model
shows a general good ability in reconstructing the morphology of the optical
turbulence (the shape of the vertical distribution of CN2) as well as the
strength of all the integrated astroclimatic parameters. The relative error
(with respect to measurements) of the averaged seeing on the whole atmosphere
for the whole sample of 41 nights is within 9.0 %. The median value of the
relative error night by night is equal to 18.7 %, so that the model still
maintains very good performances. Comparable percentages are observed in
partial vertical slabs (free atmosphere and boundary layer) and in different
seasons (summer and winter). We prove that the most urgent problem, at present,
is to increase the ability of the model in reconstructing very weak and very
strong turbulence conditions in the high atmosphere. This mainly affects the
model's performances for the isoplanatic angle predictions, for which the
median value of the relative error night by night is equal to 35.1 %. No major
problems are observed for the other astroclimatic parameters. A variant to the
standard calibration method is tested but we find that it does not provide
better results, confirming the solid base of the standard method.Comment: 12 pages, 12 figures. The definitive version can be found at:
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2010.18097.x/abstrac
Education day for new graduates
Describes an orientation program for new graduate nurses where new nurses are matched with preceptors
The future of mammary stem cell biology: the power of in vivo transplants
The recent review by Smith and Medina [1] of in vivo transplantation models and their role in investigating mammary stem cell (MaSC) biology provides comprehensive coverage of the history and complexity of the âgold standard â MaSC assay in mice. This includes a description of the pioneering studies that showed that mammary epithelial outgrowths can be generated in cleared mammary fat pads transplanted with explants or admixtures of mammary cells [2]. However, this approach clearly does not lend itself to prospective analysis of isolated subpopulations in order to identify which cells possess in vivo regenerative activity. More recently, success in obtaining complex mammary gland structures from transplanted suspensions of single cells has now made this possible [3-7]. Moreover, the regenerated structures have been shown to contain daughter cells with the same in viv
Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro- and Nanoswimmers: A Review
The last two decades have witnessed the emergence of micro- and nanoswimmers (MNSs). Researchers have invested significant efforts in engineering motile micro- and nanodevices to address current limitations in minimally invasive medicine. MNSs can move through complex fluid media by using chemical fuels or external energy sources such as magnetic fields, ultrasound, or light. Despite significant advancements in their locomotion and functionalities, the gradual deterioration of MNSs in human physiological media is often overlooked. Corrosion and biodegradation caused by chemical reactions with surrounding medium and the activity of biological agents can significantly affect their chemical stability and functional properties during their lifetime performance. It is therefore essential to understand the degradation mechanisms and factors that influence them to design ideal biomedical MNSs that are affordable, highly efficient, and sufficiently resistant to degradation (at least during their service time). This review summarizes recent studies that delve into the physicochemical characteristics and complex environmental factors affecting the corrosion and biodegradation of MNSs, with a focus on metal-based devices. Additionally, different strategies are discussed to enhance and/or optimize their stability. Conversely, controlled degradation of non-toxic MNSs can be highly advantageous for numerous biomedical applications, allowing for less invasive, safer, and more efficient treatments
Albumin Protein Impact on Early-Stage In Vitro Biodegradation of Magnesium Alloy (WE43)
Mg and its alloys are promising biodegradable materials for orthopedic implants and cardiovascular stents. The first interactions of protein molecules with Mg alloy surfaces have a substantial impact on their biocompatibility and biodegradation. We investigate the early-stage electrochemical, chemical, morphological, and electrical surface potential changes of alloy WE43 in either 154 mM NaCl or Hanksâ simulated physiological solutions in the absence or presence of bovine serum albumin (BSA) protein. WE43 had the lowest electrochemical current noise (ECN) fluctuations, the highest noise resistance (Zn = 1774 Ω·cm2), and the highest total impedance (|Z| = 332 Ω·cm2) when immersed for 30 min in Hanksâ solution. The highest ECN, lowest Zn (1430 Ω·cm2), and |Z| (49 Ω·cm2) were observed in the NaCl solution. In the solutions containing BSA, a unique dual-mode biodegradation was observed. Adding BSA to a NaCl solution increased |Z| from 49 to 97 Ω·cm2 and decreased the ECN signal of the alloy, i.e., the BSA inhibited corrosion. On the other hand, the presence of BSA in Hanksâ solution increased the rate of biodegradation by decreasing both Zn and |Z| while increasing ECN. Finally, using scanning Kelvin probe force microscopy (SKPFM), we observed an adsorbed nanolayer of BSA with aggregated and fibrillar morphology only in Hanksâ solution, where the electrical surface potential was 52 mV lower than that of the Mg oxide layer
Ovarian steroid hormones: what's hot in the stem cell pool?
The vital role of ovarian hormones in the development of the normal breast foreshadowed their importance in mammary stem cell regulation. Two recent papers reveal that 17ÎČ-estradiol and progesterone control the size and repopulating ability of the mammary stem cell compartment. This likely occurs via paracrine signaling from steroid receptor-positive luminal cells to steroid receptor-negative stem cells. These findings illuminate roles for the female sex steroids in mobilizing the stem cell pool in the normal breast, and also provide a crucial link between the known hormonal risks of breast cancer and the potential stem cell origin of this disease
- âŠ