581 research outputs found

    A Bacterial Pathogen Displaying Temperature-Enhanced Virulence of the Microalga Emiliania huxleyi.

    Full text link
    Emiliania huxleyi is a globally abundant microalga that plays a significant role in biogeochemical cycles. Over the next century, sea surface temperatures are predicted to increase drastically, which will likely have significant effects on the survival and ecology of E. huxleyi. In a warming ocean, this microalga may become increasingly vulnerable to pathogens, particularly those with temperature-dependent virulence. Ruegeria is a genus of Rhodobacteraceae whose population size tracks that of E. huxleyi throughout the alga's bloom-bust lifecycle. A representative of this genus, Ruegeria sp. R11, is known to cause bleaching disease in a red macroalga at elevated temperatures. To investigate if the pathogenicity of R11 extends to microalgae, it was co-cultured with several cell types of E. huxleyi near the alga's optimum (18°C), and at an elevated temperature (25°C) known to induce virulence in R11. The algal populations were monitored using flow cytometry and pulse-amplitude modulated fluorometry. Cultures of algae without bacteria remained healthy at 18°C, but lower cell counts in control cultures at 25°C indicated some stress at the elevated temperature. Both the C (coccolith-bearing) and S (scale-bearing swarming) cell types of E. huxleyi experienced a rapid decline resulting in apparent death when co-cultured with R11 at 25°C, but had no effect on N (naked) cell type at either temperature. R11 had no initial negative impact on C and S type E. huxleyi population size or health at 18°C, but caused death in older co-cultures. This differential effect of R11 on its host at 18 and 25°C suggest it is a temperature-enhanced opportunistic pathogen of E. huxleyi. We also detected caspase-like activity in dying C type cells co-cultured with R11, which suggests that programmed cell death plays a role in the death of E. huxleyi triggered by R11 - a mechanism induced by viruses (EhVs) and implicated in E. huxleyi bloom collapse. Given that E. huxleyi has recently been shown to have acquired resistance against EhVs at elevated temperature, bacterial pathogens with temperature-dependent virulence, such as R11, may become much more important in the ecology of E. huxleyi in a warming climate

    A small volume bioassay to assess bacterial/phytoplankton co-culture using WATER-Pulse-Amplitude-Modulated (WATER-PAM) fluorometry

    Full text link
    © 2015 Journal of Visualized Experiments. Conventional methods for experimental manipulation of microalgae have employed large volumes of culture (20 ml to 5 L), so that the culture can be subsampled throughout the experiment1–7. Subsampling of large volumes can be problematic for several reasons: 1) it causes variation in the total volume and the surface area:volume ratio of the culture during the experiment; 2) pseudo-replication (i.e., replicate samples from the same treatment flask8) is often employed rather than true replicates (i.e., sampling from replicate treatments); 3) the duration of the experiment is limited by the total volume; and 4) axenic cultures or the usual bacterial microbiota are difficult to maintain during long-term experiments as contamination commonly occurs during subsampling. The use of microtiter plates enables 1 ml culture volumes to be used for each replicate, with up to 48 separate treatments within a 12.65 x 8.5 x 2.2 cm plate, thereby decreasing the experimental volume and allowing for extensive replication without subsampling any treatment. Additionally, this technique can be modified to fit a variety of experimental formats including: bacterial-algal co-cultures, algal physiology tests, and toxin screening9–11. Individual wells with an alga, bacterium and/or co-cultures can be sampled for numerous laboratory procedures including, but not limited to: WATER-Pulse-Amplitude-Modulated (WATER-PAM) fluorometry, microscopy, bacterial colony forming unit (cfu) counts and flow cytometry. The combination of the microtiter plate format and WATER-PAM fluorometry allows for multiple rapid measurements of photochemical yield and other photochemical parameters with low variability between samples, high reproducibility and avoids the many pitfalls of subsampling a carboy or conical flask over the course of an experiment

    The bacterial symbiont Phaeobacter inhibens Shapes the life history of its algal host emiliania huxleyi

    Full text link
    © 2018 Bramucci, Labeeuw, Orata, Ryan, Malmstrom and Case. Marine microbes form host-associated biofilm communities that are shaped by complex interactions between bacteria and their host. The roseobacter Phaeobacter inhibens exploits both symbiotic and pathogenic niches while interacting with its microalgal host Emiliania huxleyi. During co-cultivation over extended periods with E. huxleyi, we show that P. inhibens selectively kills two host cell types, the diploid calcifying strain and the haploid flagellated strain. Meanwhile, various non-calcifying diploid strains are resistant to this pathogen or the pathogen is avirulent to this cell type. This differential pathogenesis has the potential of dramatically altering the composition of E. huxleyi blooms, which are typically dominated by the roseobacter-susceptible calcifying strain. This cell type makes calcite plates, which are an important sink in the marine carbon cycle and forms part of the marine paleobotanic record. P. inhibens kills the haploid cells, which have been proposed as critical to the survival of the algae, as they readily escape both eukaryotic predation and viral infection. Consequently, bacteria such as P. inhibens could influence E. huxleyi's life history by selective pathogenesis, thereby altering the composition of cell types within E. huxleyi populations and its bloom-bust lifestyle

    Draft Genome Sequences of Four Bacterial Strains Isolated from a Polymicrobial Culture of Naked (N-Type) Emiliania huxleyi CCMP1516.

    Full text link
    Strains of Sulfitobacter spp., Erythrobacter sp., and Marinobacter sp. were isolated from a polymicrobial culture of the naked (N-type) haptophyte Emiliania huxleyi strain CCMP1516. The genomes encode genes for the production of phytohormones, vitamins, and the consumption of their hosts' metabolic by-products, suggesting symbiotic interactions within this polymicrobial culture

    Draft Genome Sequences of Seven Bacterial Strains Isolated from a Polymicrobial Culture of Coccolith-Bearing (C-Type) Emiliania huxleyi M217.

    Full text link
    Strains of Rhodobacteraceae, Sphingomonadales, Alteromonadales, and Bacteroidetes were isolated from a polymicrobial culture of the coccolith-forming (C-type) haptophyte Emiliania huxleyi strain M217. The genomes encode genes for the production of algal growth factors and the consumption of their hosts' metabolic by-products, suggesting that the polymicrobial culture harbors many symbiotic interactions

    Indole-3-acetic acid is produced by Emiliania huxleyi coccolith-bearing cells and triggers a physiological response in bald cells

    Get PDF
    © 2016 Labeeuw, Khey, Bramucci, Atwal, de la Mata, Harynuk and Case. Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host

    The mechanical response of talin

    Get PDF
    Talin, a force-bearing cytoplasmic adapter essential for integrin-mediated cell adhesion, links the actin cytoskeleton to integrin-based cell–extracellular matrix adhesions at the plasma membrane. Its C-terminal rod domain, which contains 13 helical bundles, plays important roles in mechanosensing during cell adhesion and spreading. However, how the structural stability and transition kinetics of the 13 helical bundles of talin are utilized in the diverse talin-dependent mechanosensing processes remains poorly understood. Here we report the force-dependent unfolding and refolding kinetics of all talin rod domains. Using experimentally determined kinetics parameters, we determined the dynamics of force fluctuation during stretching of talin under physiologically relevant pulling speeds and experimentally measured extension fluctuation trajectories. Our results reveal that force-dependent stochastic unfolding and refolding of talin rod domains make talin a very effective force buffer that sets a physiological force range of only a few pNs in the talin-mediated force transmission pathway

    The genetic parameters of feed efficiency and its component traits in the turkey (Meleagris gallopavo)

    Get PDF
    Residual feed intake (RFI) and feed conversion ratio (FCR) can be incorporated into a breeding program as traits to select for feed efficiency. Alternatively, the direct measures used to calculate RFI and FCR can be analyzed to determine the underlying variation in the traits that impact overall efficiency. These constituent traits can then be appropriately weighted in an index to achieve genetic gain. To investigate feed efficiency in the turkey, feed intake and weight gain were measured on male primary breeder line turkeys housed in individual feeding cages from 15 to 19 weeks of age. The FCR and RFI showed moderate heritability values of 0.16 and 0.21, respectively. Feed intake, body weight, and weight gain were also moderately heritable (0.25, 0.35, and 0.18, respectively). Weight gain was negatively correlated to feed conversion ratio and was not genetically correlated to RFI. Body weight had a small and positive genetic correlation to RFI (0.09) and FCR (0.12). Feed intake was positively genetically correlated to RFI (0.62); however, there was no genetic correlation between feed intake and FCR. These estimates of heritability and the genetic correlations can be used in the development of an index to improve feed efficiency and reduce the cost of production
    corecore