9 research outputs found

    Prognostic factors in intramedullary astrocytomas: a literature review

    No full text
    Astrocytomas affect a significant portion of patients with intramedullary tumors. These infiltratively growing tumors are treated by a variety of methods—biopsy and decompressive surgery, maximal safe resection, adjuvant oncological therapy. Also, numerous prognostic factors are reported in the literature. Better understanding of factors that influence prognosis may help in treatment planning with the goal of prolonging survival. We have thus undertaken an extensive literature review in order to define factors affecting prognosis. A total of 38 articles were studied. Only tumor grade was consistently reported as the major factor affecting prognosis. The influence of other clinical factors (age, gender, history length, functional status, tumor location or extent, syrinx or cyst presence) can be speculated upon, but cannot be assessed adequately from the available literature. For both low- and high-grade (HG) astrocytomas, maximal safe tumor resection should be the primary treatment objective but is often not feasible in contrast to other intramedullary and spinal neoplasms. Since the biological nature of spinal cord HG glioma is identical to that of the brain, the same treatment algorithm of maximal safe resection followed by concomitant radio- and chemotherapy would be sensible to implement

    Transcription factor c-Myb inhibits breast cancer lung metastasis by suppression of tumor cell seeding

    Full text link
    Metastasis accounts for most of cancer-related deaths. Paracrine signaling between tumor cells and the stroma induces changes in the tumor microenvironment required for metastasis. Transcription factor c-Myb was associated with breast cancer (BC) progression but its role in metastasis remains unclear. Here we show that increased c-Myb expression in BC cells inhibits spontaneous lung metastasis through impaired tumor cell extravasation. On contrary, BC cells with increased lung metastatic capacity exhibited low c-Myb levels. We identified a specific inflammatory signature, including Ccl2 chemokine, that was expressed in lung metastatic cells but was suppressed in tumor cells with higher c-Myb levels. Tumor cell-derived Ccl2 expression facilitated lung metastasis and rescued trans-endothelial migration of c-Myb overexpressing cells. Clinical data show that the identified inflammatory signature, together with a MYB expression, predicts lung metastasis relapse in BC patients. These results demonstrate that the c-Myb-regulated transcriptional program in BCs results in a blunted inflammatory response and consequently suppresses lung metastasis.Oncogene advance online publication, 30 October 2017; doi:10.1038/onc.2017.392
    corecore