9,704 research outputs found
Effects of lipopolysaccharide-induced inflammation on expression of growth-associated genes by corticospinal neurons
Background: Inflammation around cell bodies of primary sensory neurons and retinal ganglion cells enhances expression of neuronal growth-associated genes and stimulates axonal regeneration. We have asked if inflammation would have similar effects on corticospinal neurons, which normally show little response to spinal cord injury. Lipopolysaccharide (LPS) was applied onto the pial surface of the motor cortex of adult rats with or without concomitant injury of the corticospinal tract at C4. Inflammation around corticospinal tract cell bodies in the motor cortex was assessed by immunohistochemistry for OX42 ( a microglia and macrophage marker). Expression of growth-associated genes c-jun, ATF3, SCG10 and GAP-43 was investigated by immunohistochemistry or in situ hybridisation.Results: Application of LPS induced a gradient of inflammation through the full depth of the motor cortex and promoted c-Jun and SCG10 expression for up to 2 weeks, and GAP-43 upregulation for 3 days by many corticospinal neurons, but had very limited effects on neuronal ATF3 expression. However, many glial cells in the subcortical white matter upregulated ATF3. LPS did not promote sprouting of anterogradely labelled corticospinal axons, which did not grow into or beyond a cervical lesion site.Conclusion: Inflammation produced by topical application of LPS promoted increased expression of some growth-associated genes in the cell bodies of corticospinal neurons, but was insufficient to promote regeneration of the corticospinal tract
Gap anisotropy and universal pairing scale in a spin fluctuation model for cuprates
We consider the evolution of d-wave pairing, mediated by nearly critical spin
fluctuations, with the coupling strength. We show that the onset temperature
for pairing, T*, smoothly evolves between weak and strong coupling, passing
through a broad maximum at intermediate coupling. At strong coupling, T* is of
order the magnetic exchange energy J. We argue that for all couplings, pairing
is confined to the vicinity of the Fermi surface. We also find that thermal
spin fluctuations only modestly reduce T*, even at criticality, but they
substantially smooth the gap anisotropy. The latter evolves with coupling,
being the largest at weak coupling.Comment: 5 pages, 4 figure
ATF3 upregulation in glia during Wallerian degeneration: differential expression in peripheral nerves and CNS white matter
Background: Many changes in gene expression occur in distal stumps of injured nerves but the transcriptional control of these events is poorly understood. We have examined the expression of the transcription factors ATF3 and c-Jun by non-neuronal cells during Wallerian degeneration following injury to sciatic nerves, dorsal roots and optic nerves of rats and mice, using immunohistochemistry and in situ hybridization.Results: Following sciatic nerve injury-transection or transection and reanastomosis-ATF3 was strongly upregulated by endoneurial, but not perineurial cells, of the distal stumps of the nerves by 1 day post operation (dpo) and remained strongly expressed in the endoneurium at 30 dpo when axonal regeneration was prevented. Most ATF3+ cells were immunoreactive for the Schwann cell marker, S100. When the nerve was transected and reanastomosed, allowing regeneration of axons, most ATF3 expression had been downregulated by 30 dpo. ATF3 expression was weaker in the proximal stumps of the injured nerves than in the distal stumps and present in fewer cells at all times after injury. ATF3 was upregulated by endoneurial cells in the distal stumps of injured neonatal rat sciatic nerves, but more weakly than in adult animals. ATF3 expression in transected sciatic nerves of mice was similar to that in rats. Following dorsal root injury in adult rats, ATF3 was upregulated in the part of the root between the lesion and the spinal cord (containing Schwann cells), beginning at 1 dpo, but not in the dorsal root entry zone or in the degenerating dorsal column of the spinal cord. Following optic nerve crush in adult rats, ATF3 was found in some cells at the injury site and small numbers of cells within the optic nerve displayed weak immunoreactivity. The pattern of expression of c-Jun in all types of nerve injury was similar to that of ATF3.Conclusion: These findings raise the possibility that ATF3/c-Jun heterodimers may play a role in regulating changes in gene expression necessary for preparing the distal segments of injured peripheral nerves for axonal regeneration. The absence of the ATF3 and c-Jun from CNS glia during Wallerian degeneration may limit their ability to support regeneration
The equational theories of representable residuated semigroups
We show that the equational theory of representable lower semilattice-ordered residuated semigroups is finitely based. We survey related results
Condensation energy in strongly coupled superconductors
We consider the condensation energy in superconductors where the pairing is
electronic in origin and is mediated by a collective bosonic mode.
We use magnetically-mediated superconductivity as an example, and show that
for large spin-fermion couplings, the physics is qualitatively different from
the BCS theory as the condensation energy results from the feedback on spin
excitations, while the electronic contribution to the condensation energy is
positive due to an ``undressing'' feedback on the fermions. The same feedback
effect accounts for the gain of the kinetic energy at strong couplings.Comment: 4 pages, revtex 4, 3 eps figure
Air Quality Considerations for Stormwater Green Street Design
Green streets are increasingly being used as a stormwater management strategy to mitigate stormwater runoff at its source while providing other environmental and societal benefits, including connecting pedestrians to the street. Simultaneously, human exposure to particulate matter from urban transportation is of major concern worldwide due to the proximity of pedestrians, drivers, and cyclists to the emission sources. Vegetation used for stormwater treatment can help designers limit the exposure of people to air pollutants. This goal can be achieved through the deliberate placement of green streets, along with strategic planting schemes that maximize pollutant dispersion. This communication presents general design considerations for green streets that combine stormwater management and air quality goals. There is currently limited guidance on designing green streets for air quality considerations; this is the first communication to offer suggestions and advice for the design of green stormwater streets in regards to their effects on air quality. Street characteristics including (1) the width to height ratio of the street to the buildings, (2) the type of trees and their location, and (3) any prevailing winds can have an impact on pollutant concentrations within the street and along sidewalks. Vegetation within stormwater control measures has the ability to reduce particulate matter concentrations; however, it must be carefully selected and placed within the green street to promote the dispersion of air flow
Integrating models to quantify environment mediated drug resistance
Drug resistance is the single most important driver of cancer treatment failure for modern targeted therapies, and the dialogue between tumor and stroma has been shown to modulate the response to molecularly targeted therapies through proliferative and survival signaling. In this work, we investigate interactions between a growing tumor and its surrounding stroma and their role in facilitating the emergence of drug resistance. We used mathematical modeling as a theoretical framework to bridge between experimental models and scales, with the aim of separating intrinsic and extrinsic components of resistance in BRAFmutated melanoma; the model describes tumor-stroma dynamics both with and without treatment. Integration of experimental data into our model revealed significant variation in either the intensity of stromal promotion or intrinsic tissue carrying capacity across animal replicates
Berry phase for ferromagnet with fractional spin
We study the double exchange model on two lattice sites with one conduction
electron in the limit of an infinite Hund's interaction. While this simple
problem is exactly solvable, we present an approximate solution which is valid
in the limit of large core spins. This solution is obtained by integrating out
charge degrees of freedom. The effective action of two core spins obtained in
the result of such an integration resembles the action of two fractional spins.
We show that the action obtained via naive gradient expansion is inconsistent.
However, a ``non-perturbative'' treatment leads to an extra term in the
effective action which fixes this inconsistency. The obtained ``Berry phase
term'' is geometric in nature. It arises from a geometric constraint on a
target space imposed by an adiabatic approximation.Comment: 11 pages, 3 figures, revtex
- …