16 research outputs found
Synergistic Effect of Functionalized Nickel Nanoparticles and Quercetin on Inhibition of the SMMC-7721 Cells Proliferation
The effect of functionalized nickel (Ni) nanoparticles capped with positively charged tetraheptylammonium on cellular uptake of drug quercetin into hepatocellular carcinoma cells (SMMC-7721) has been explored in this study via microscopy and electrochemical characterization as well as MTT assay. Meanwhile, the influence of Ni nanoparticles and/or quercetin on cell proliferation has been further evaluated by the real-time cell electronic sensing (RT-CES) study. Our observations indicate that Ni nanoparticles could efficiently improve the permeability of cancer cell membrane, and remarkably enhance the accumulation of quercetin in SMMC-7721 cells, suggesting that Ni nanoparticles and quercetin would facilitate the synergistic effect on inhibiting proliferation of cancer cells
The Photodynamic Effect of Different Size ZnO Nanoparticles on Cancer Cell Proliferation In Vitro
Nanomaterials have widely been used in the field of biological and biomedicine, such as tissue imaging, diagnosis and cancer therapy. In this study, we explored the cytotoxicity and photodynamic effect of different-sized ZnO nanoparticles to target cells. Our observations demonstrated that ZnO nanoparticles exerted dose-dependent and time-dependent cytotoxicity for cancer cells like hepatocellular carcinoma SMMC-7721 cells in vitro. Meanwhile, it was observed that UV irradiation could enhance the suppression ability of ZnO nanoparticles on cancer cells proliferation, and these effects were in the size-dependent manner. Furthermore, when ZnO nanoparticles combined with daunorubicin, the related cytotoxicity of anticancer agents on cancer cells was evidently enhanced, suggesting that ZnO nanoparticles could play an important role in drug delivery. This may offer the possibility of the great potential and promising applications of the ZnO nanoparticles in clinical and biomedical areas like photodynamic cancer therapy and others
Revised 2017 international consensus on testing of ANCAs in granulomatosis with polyangiitis and microscopic polyangiitis
Anti-neutrophil cytoplasmic antibodies (ANCAs) are valuable laboratory markers used for the diagnosis of well-defined types of small-vessel vasculitis, including granulomatosis with polyangiitis (GPA) and microscopic polyangiitis (MPA). According to the 1999 international consensus on ANCA testing, indirect immunofluorescence (IIF) should be used to screen for ANCAs, and samples containing ANCAs should then be tested by immunoassays for proteinase 3 (PR3)-ANCAs and myeloperoxidase (MPO)-ANCAs. The distinction between PR3-ANCAs and MPO-ANCAs has important clinical and pathogenic implications. As dependable immunoassays for PR3-ANCAs and MPO-ANCAs have become broadly available, there is increasing international agreement that high-quality immunoassays are the preferred screening method for the diagnosis of ANCA-associated vasculitis. The present Consensus Statement proposes that high-quality immunoassays can be used as the primary screening method for patients suspected of having the ANCA-associated vaculitides GPA and MPA without the categorical need for IIF, and presents and discusses evidence to support this recommendation