99 research outputs found
Nested Fermi surface and electronic instability in Ca3Ru2O7
High-resolution angular resolved photoemission data reveal well-defined quasiparticle bands of unusually low weight, emerging in line with the metallic phase of
Ca
3
Ru
2
O
7
below
âŒ
30
â
â
K
. At the bulk structural phase transition temperature of 48 K, we find clear evidence for an electronic instability, gapping large parts of the underlying Fermi surface that appears to be nested. Metallic pockets are found to survive in the small, non-nested sections, constituting a low-temperature Fermi surface with 2 orders of magnitude smaller volume than in all other metallic ruthenates. The Fermi velocities and volumes of these pockets are in agreement with the results of complementary quantum oscillation measurements on the same crystal batches
A recurrent epidermoid cyst of the spleen: report of a case and literature review
BACKGROUND: Splenic cysts are rare disease. Epidermoid cysts of the spleen belong to the primary nonparasitic splenic cysts group. They are an unusual event in surgical practice. Usually, epidermoid cysts occur in children and young female. Most often, they are asymptomatic, but they may present with abdominal discomfort. CASE PRESENTATION: We are reporting a rare case of a 23-year-old female came to our attention with history of intermittent pain and previously undergone two times to laparoscopic decapsulation of the cyst in others institutions. During hospitalization, serum and intracystic levels of tumor marker CA19-9 increased. Enhanced CT of the abdomen showed recurrent large cyst in the upper pole of the spleen with satellite nodules. Laparotomic total splenectomy was performed. Histopathological and immunoreactive examinations were executed, and they revealed stratified squamous epithelium on the inner surface of cystic wall, which was positive for EMA, CEA, and CA19-9. The diagnosis of epidermoid cyst was confirmed. CONCLUSIONS: Recently, the surgical approach is changing towards conservative treatments in order to save the spleen in young patients for immunological reasons. Sometimes, this target is not achievable. In such circumstances, like recurrent large cyst, anomalous anatomical relationship to the surrounding tissues, total splenectomy is safe and necessary
An extraterrestrial trigger for the Early Cretaceous massive volcanism? Evidence from the paleo-Tethys Ocean
The Early Cretaceous Greater Ontong Java Event in the Pacific Ocean may have covered ca. 1% of the Earth's surface with volcanism. It has puzzled scientists trying to explain its origin by several mechanisms possible on Earth, leading others to propose an extraterrestrial trigger to explain this event. A large oceanic extraterrestrial impact causing such voluminous volcanism may have traces of its distal ejecta in sedimentary rocks around the basin, including the paleo-Tethys Ocean which was then contiguous with the Pacific Ocean. The contemporaneous marine sequence at central Italy, containing the sedimentary expression of a global oceanic anoxic event (OAE1a), may have recorded such ocurrence as indicated by two stratigraphic intervals with 187Os/188Os indicative of meteoritic influence. Here we show, for the first time, that platinum group element abundances and inter-element ratios in this paleo-Tethyan marine sequence provide no evidence for an extraterrestrial trigger for the Early Cretaceous massive volcanism
Quasiparticle interference and strong electron-mode coupling in the quasi-one-dimensional bands of Sr2RuO4
The single-layered ruthenate SrRuO has attracted a great deal of
interest as a spin-triplet superconductor with an order parameter that may
potentially break time reversal invariance and host half-quantized vortices
with Majorana zero modes. While the actual nature of the superconducting state
is still a matter of controversy, it has long been believed that it condenses
from a metallic state that is well described by a conventional Fermi liquid. In
this work we use a combination of Fourier transform scanning tunneling
spectroscopy (FT-STS) and momentum resolved electron energy loss spectroscopy
(M-EELS) to probe interaction effects in the normal state of SrRuO. Our
high-resolution FT-STS data show signatures of the \beta-band with a distinctly
quasi-one-dimensional (1D) character. The band dispersion reveals surprisingly
strong interaction effects that dramatically renormalize the Fermi velocity,
suggesting that the normal state of SrRuO is that of a 'correlated
metal' where correlations are strengthened by the quasi 1D nature of the bands.
In addition, kinks at energies of approximately 10meV, 38meV and 70meV are
observed. By comparing STM and M-EELS data we show that the two higher energy
features arise from coupling with collective modes. The strong correlation
effects and the kinks in the quasi 1D bands may provide important information
for understanding the superconducting state. This work opens up a unique
approach to revealing the superconducting order parameter in this compound
Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes
Background: The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods: This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results: Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal âsentinelâ surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (=3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has becomedominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions: The consortiumâs aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies
Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives
In the past two decades, increased production and usage of metallic nanoparticles (NPs) has inevitably increased their discharge into the different compartments of the environment, which ultimately paved the way for their uptake and accumulation in various trophic levels of the food chain. Due to these issues, several questions have been raised on the usage of NPs in everyday life and has become a matter of public health concern. Among the metallic NPs, Cu-based NPs have gained popularity due to their cost-effectiveness and multifarious promising uses. Several studies in the past represented the phytotoxicity of Cu-based NPs on plants. However, comprehensive knowledge is still lacking. Additionally, the impact of Cu-based NPs on soil organisms such as agriculturally important microbes, fungi, mycorrhiza, nematode, and earthworms are poorly studied. This review article critically analyses the literature data to achieve a more comprehensive knowledge on the toxicological profile of Cu-based NPs and increase our understanding of the effects of Cu-based NPs on aquatic and terrestrial plants as well as on soil microbial communities. The underlying mechanism of biotransformation of Cu-based NPs and the process of their penetration into plants has also been discussed herein. Overall, this review could provide valuable information to design rules and regulations for the safe disposal of Cu-based NPs into a sustainable environment
Potential Role of Biological Systems in Formation of Nanoparticles: Mechanism of Synthesis and Biomedical Applications
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Nanotechnology is essentially related with the synthesis of nanoparticles of varying size and shapes. With the search of environment-friendly protocols for the synthesis of nanoparticles a diverse group of biological agents have been emerged. These biological agents are safe, eco-friendly and lead to green synthesis of nanoparticles. The present review focuses on the role of biological agent(s) towards the development of green nanotechnology, the applications of nanoparticles in different fields of science and technology, and also the toxicological effects of nanoparticles.95576587Council of Scientific and Industrial Research, New Delhi, India [CSIR/09/996(001)/2009-EMR-I]Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Council of Scientific and Industrial Research, New Delhi, India [CSIR/09/996(001)/2009-EMR-I
Exploitation of Aspergillus niger for Synthesis of Silver Nanoparticles
Extracellular biosynthesis of silver nanoparticles by Aspergillus niger isolated from soil is being reported in the present paper. The production of silver nanoparticles was evidenced by UV-vis spectrum, showing the absorbance at 420 nm (Perkin Elmer Lambda-25). The nanoparticles characterized by Transmission Electron Microscopy exhibited spherical silver nanoparticles with diameter of around 20 nm. Elemental Spectroscopy imaging showed the presence of fungal protein around the silver nanoparticles thereby increasing their stability in the suspension. The silver nanoparticles (10 mu g/ml) showed remarkable antibacterial activity against gram-positive (Staphylococcus. aureus) and gram-negative (Escherichia coli) bacteria. The reduction of the silver ions might have occurred by a nitrate-dependent reductase enzyme and a shuttle quinone extracellular process. Reduction of silver ions was an extracellular and rapid process; this knowledge may lead to the development of an easy process for biosynthesis of the silver nanoparticles. Potential of fungal-mediated biosynthesis of silver nanoparticles is important for development of effective antibacterial agents showing resistance to drugs available in the market.2324324
- âŠ