124 research outputs found
An expectation transformer approach to predicate abstraction and data independence for probabilistic programs
In this paper we revisit the well-known technique of predicate abstraction to
characterise performance attributes of system models incorporating probability.
We recast the theory using expectation transformers, and identify transformer
properties which correspond to abstractions that yield nevertheless exact bound
on the performance of infinite state probabilistic systems. In addition, we
extend the developed technique to the special case of "data independent"
programs incorporating probability. Finally, we demonstrate the subtleness of
the extended technique by using the PRISM model checking tool to analyse an
infinite state protocol, obtaining exact bounds on its performance
Probabilistic Rely-guarantee Calculus
Jones' rely-guarantee calculus for shared variable concurrency is extended to
include probabilistic behaviours. We use an algebraic approach which combines
and adapts probabilistic Kleene algebras with concurrent Kleene algebra.
Soundness of the algebra is shown relative to a general probabilistic event
structure semantics. The main contribution of this paper is a collection of
rely-guarantee rules built on top of that semantics. In particular, we show how
to obtain bounds on probabilities by deriving rely-guarantee rules within the
true-concurrent denotational semantics. The use of these rules is illustrated
by a detailed verification of a simple probabilistic concurrent program: a
faulty Eratosthenes sieve.Comment: Preprint submitted to TCS-QAP
Abstract Hidden Markov Models: a monadic account of quantitative information flow
Hidden Markov Models, HMM's, are mathematical models of Markov processes with
state that is hidden, but from which information can leak. They are typically
represented as 3-way joint-probability distributions.
We use HMM's as denotations of probabilistic hidden-state sequential
programs: for that, we recast them as `abstract' HMM's, computations in the
Giry monad , and we equip them with a partial order of increasing
security. However to encode the monadic type with hiding over some state
we use rather
than the conventional that suffices for
Markov models whose state is not hidden. We illustrate the
construction with a small
Haskell prototype.
We then present uncertainty measures as a generalisation of the extant
diversity of probabilistic entropies, with characteristic analytic properties
for them, and show how the new entropies interact with the order of increasing
security. Furthermore, we give a `backwards' uncertainty-transformer semantics
for HMM's that is dual to the `forwards' abstract HMM's - it is an analogue of
the duality between forwards, relational semantics and backwards,
predicate-transformer semantics for imperative programs with demonic choice.
Finally, we argue that, from this new denotational-semantic viewpoint, one
can see that the Dalenius desideratum for statistical databases is actually an
issue in compositionality. We propose a means for taking it into account
A New Proof Rule for Almost-Sure Termination
An important question for a probabilistic program is whether the probability
mass of all its diverging runs is zero, that is that it terminates "almost
surely". Proving that can be hard, and this paper presents a new method for
doing so; it is expressed in a program logic, and so applies directly to source
code. The programs may contain both probabilistic- and demonic choice, and the
probabilistic choices may depend on the current state.
As do other researchers, we use variant functions (a.k.a.
"super-martingales") that are real-valued and probabilistically might decrease
on each loop iteration; but our key innovation is that the amount as well as
the probability of the decrease are parametric.
We prove the soundness of the new rule, indicate where its applicability goes
beyond existing rules, and explain its connection to classical results on
denumerable (non-demonic) Markov chains.Comment: V1 to appear in PoPL18. This version collects some existing text into
new example subsection 5.5 and adds a new example 5.6 and makes further
remarks about uncountable branching. The new example 5.6 relates to work on
lexicographic termination methods, also to appear in PoPL18 [Agrawal et al,
2018
Hidden-Markov Program Algebra with iteration
We use Hidden Markov Models to motivate a quantitative compositional
semantics for noninterference-based security with iteration, including a
refinement- or "implements" relation that compares two programs with respect to
their information leakage; and we propose a program algebra for source-level
reasoning about such programs, in particular as a means of establishing that an
"implementation" program leaks no more than its "specification" program.
This joins two themes: we extend our earlier work, having iteration but only
qualitative, by making it quantitative; and we extend our earlier quantitative
work by including iteration. We advocate stepwise refinement and
source-level program algebra, both as conceptual reasoning tools and as targets
for automated assistance. A selection of algebraic laws is given to support
this view in the case of quantitative noninterference; and it is demonstrated
on a simple iterated password-guessing attack
Directional Privacy for Deep Learning
Differentially Private Stochastic Gradient Descent (DP-SGD) is a key method
for applying privacy in the training of deep learning models. This applies
isotropic Gaussian noise to gradients during training, which can perturb these
gradients in any direction, damaging utility. Metric DP, however, can provide
alternative mechanisms based on arbitrary metrics that might be more suitable.
In this paper we apply \textit{directional privacy}, via a mechanism based on
the von Mises-Fisher (VMF) distribution, to perturb gradients in terms of
\textit{angular distance} so that gradient direction is broadly preserved. We
show that this provides -privacy for deep learning training, rather
than the -privacy of the Gaussian mechanism; and that
experimentally, on key datasets, the VMF mechanism can outperform the Gaussian
in the utility-privacy trade-off
- …