1,908 research outputs found

    Monotonicity and logarithmic convexity relating to the volume of the unit ball

    Full text link
    Let Ωn\Omega_n stand for the volume of the unit ball in Rn\mathbb{R}^n for nNn\in\mathbb{N}. In the present paper, we prove that the sequence Ωn1/(nlnn)\Omega_{n}^{1/(n\ln n)} is logarithmically convex and that the sequence Ωn1/(nlnn)Ωn+11/[(n+1)ln(n+1)]\frac{\Omega_{n}^{1/(n\ln n)}}{\Omega_{n+1}^{1/[(n+1)\ln(n+1)]}} is strictly decreasing for n2n\ge2. In addition, some monotonic and concave properties of several functions relating to Ωn\Omega_{n} are extended and generalized.Comment: 12 page

    Generalized Convexity and Inequalities

    Get PDF
    Let R+ = (0,infinity) and let M be the family of all mean values of two numbers in R+ (some examples are the arithmetic, geometric, and harmonic means). Given m1, m2 in M, we say that a function f : R+ to R+ is (m1,m2)-convex if f(m1(x,y)) < or = m2(f(x),f(y)) for all x, y in R+ . The usual convexity is the special case when both mean values are arithmetic means. We study the dependence of (m1,m2)-convexity on m1 and m2 and give sufficient conditions for (m1,m2)-convexity of functions defined by Maclaurin series. The criteria involve the Maclaurin coefficients. Our results yield a class of new inequalities for several special functions such as the Gaussian hypergeometric function and a generalized Bessel function.Comment: 17 page

    Modular Equations and Distortion Functions

    Full text link
    Modular equations occur in number theory, but it is less known that such equations also occur in the study of deformation properties of quasiconformal mappings. The authors study two important plane quasiconformal distortion functions, obtaining monotonicity and convexity properties, and finding sharp bounds for them. Applications are provided that relate to the quasiconformal Schwarz Lemma and to Schottky's Theorem. These results also yield new bounds for singular values of complete elliptic integrals.Comment: 23 page

    The Baryon asymmetry in the Standard Model with a low cut-off

    Get PDF
    We study the generation of the baryon asymmetry in a variant of the standard model, where the Higgs field is stabilized by a dimension-six interaction. Analyzing the one-loop potential, we find a strong first order electroweak phase transition for Higgs masses up to at least 170 GeV. Dimension-six operators induce also new sources of CP violation. We compute the baryon asymmetry in the WKB approximation. Novel source terms in the transport equations enhance the generated baryon asymmetry. For a wide range of parameters the model predicts a baryon asymmetry close to the observed value.Comment: 22 pages, latex, 6 figure

    Fermi edge singularities in X-ray spectra of strongly correlated fermions

    Get PDF
    We discuss the problem of the X-ray absorption in a system of interacting fermions and, in particular, those features in the X-ray spectra that can be used to discriminate between conventional Fermi-liquids and novel "strange metals". Focusing on the case of purely forward scattering off the core-hole potential, we account for the relevant interactions in the conduction band by means of the bosonization technique. We find that the X-ray Fermi edge singularities can still be present, although modified, even if the density of states vanishes at the Fermi energy, and that, in general, the relationship between the two appears to be quite subtle.Comment: Latex, 16 pages, Princeton preprin

    Auxiliary particle theory of threshold singularities in photoemission and X-ray absorption spectra: Test of a conserving T-matrix approximation

    Full text link
    We calculate the exponents of the threshold singularities in the photoemission spectrum of a deep core hole and its X-ray absorption spectrum in the framework of a systematic many-body theory of slave bosons and pseudofermions (for the empty and occupied core level). In this representation, photoemission and X-ray absorption can be understood on the same footing; no distinction between orthogonality catastrophe and excitonic effects is necessary. We apply the conserving slave particle T-matrix approximation (CTMA), recently developed to describe both Fermi and non-Fermi liquid behavior systems with strong local correlations, to the X-ray problem as a test case. The numerical results for both photoemission and X-ray absorption are found to be in agreement with the exact infrared powerlaw behavior in the weak as well as in the strong coupling regions. We point out a close relation of the CTMA with the parquet equation approach of Nozi{\`e}res et al.Comment: 10 pages, 9 figures, published versio

    Critical slowing down in the geometrically frustrated pyrochlore antiferromagnet Gd_2Ti_2O_7

    Full text link
    Longitudinal-field muon spin relaxation experiments have been carried out in the paramagnetic state of single-crystal Gd_2Ti_2O_7 just above the phase transition at T_m = 1.0 K. At high applied fields the exponential relaxation time T_1 is proportional to field, whereas T_1 saturates below a crossover field B_c that is ~2.5 T at 1.5 K and decreases as T_m is approached. At low fields the relaxation rate increases markedly as the freezing temperature is approached, as expected for critical slowing down of the spin fluctuations, but the increase is suppressed by applied field. This behavior is consistent with the very long autocorrelation function cutoff time implied by the low value of B_c.Comment: 4 pages, 2 figures, submitted to 10th International Conference on Muon Spin Rotation, Relaxation, and Resonance, Oxford, UK, August 200

    Isolating JavaScript with Filters, Rewriting, and Wrappers

    Get PDF
    Abstract. We study methods that allow web sites to safely combine JavaScript from untrusted sources. If implemented properly, filters can prevent dangerous code from loading into the execution environment, while rewriting allows greater expressiveness by inserting run-time checks. Wrapping properties of the execution environment can prevent misuse without requiring changes to imported JavaScript. Using a formal semantics for the ECMA 262-3 standard language, we prove security properties of a subset of JavaScript, comparable in expressiveness to Facebook FBJS, obtained by combining three isolation mechanisms. The isolation guarantees of the three mechanisms are interdependent, with rewriting and wrapper functions relying on the absence of JavaScript constructs eliminated by language filters.
    corecore