70 research outputs found

    Similarities and differences of pumping conventional and self-compacting concrete

    Get PDF
    In Practice, Self-Compacting Concrete (SCC) is Considered as a Simple Extension of Conventional Vibrated Concrete (CVC) When Pumping is Concerned. the Same Equipment, Materials, Pumping Procedures and Guidelines Used for CVC Are Applied When Pumping SCC. on the Other Hand, It Has Been Clearly Shown that the Rheological Properties and the Mix Design of SCC Are Different Than CVC. Can the Same Pumping Principles Employed for CVC Be Applied for SCC? This Paper Compares the Some Published Results of Pumping of CVC with Those for SCC. a First Striking Difference between Pumping of CVC and SCC is the Flow Behaviour in the Pipes. the Flow of CVC is a Plug, Surrounded by a Lubricating Layer, While during the Flow of SCC, Part of the Concrete Volume itself is Sheared Inside the Pipe. as a Result, the Importance of Viscosity Increases in Case of SCC. Due to the Low Yield Stress of SCC, the Behaviour in Bends is Different, But Quite Complex to Study. Due to the Lower Content of Aggregate and Better Stability of SCC, as It is Less Prone to Internal Water Migration, Blocking is Estimated to Occur at Lower Frequency in Case of SCC. © RILEM 2010

    State of the Art on Prediction of Concrete Pumping

    Get PDF
    Large scale constructions needs to estimate a possibility for pumping concrete. In this paper, the state of the art on prediction of concrete pumping including analytical and experimental works is presented. The existing methods to measure the rheological properties of slip layer (or called lubricating layer) are first introduced. Second, based on the rheological properties of slip layer and parent concrete, models to predict concrete pumping (flow rate, pumping pressure, and pumpable distance) are explained. Third, influencing factors on concrete pumping are discussed with the test results of various concrete mixes. Finally, future need for research on concrete pumping is suggested.ope

    Effects of circadian disruption on physiology and pathology: from bench to clinic (and back)

    Get PDF
    Nested within the hypothalamus, the suprachiasmatic nuclei (SCN) represent a central biological clock that regulates daily and circadian (i.e., close to 24 h) rhythms in mammals. Besides the SCN, a number of peripheral oscillators throughout the body control local rhythms and are usually kept in pace by the central clock. In order to represent an adaptive value, circadian rhythms must be entrained by environmental signals or zeitgebers, the main one being the daily light?dark (LD) cycle. The SCN adopt a stable phase relationship with the LD cycle that, when challenged, results in abrupt or chronic changes in overt rhythms and, in turn, in physiological, behavioral, and metabolic variables. Changes in entrainment, both acute and chronic, may have severe consequences in human performance and pathological outcome. Indeed, animal models of desynchronization have become a useful tool to understand such changes and to evaluate potential treatments in human subjects. Here we review a number of alterations in circadian entrainment, including jet lag, social jet lag (i.e., desynchronization between body rhythms and normal time schedules), shift work, and exposure to nocturnal light, both in human subjects and in laboratory animals. Finally, we focus on the health consequences related to circadian/entrainment disorders and propose a number of approaches for the management of circadian desynchronization.Fil: Chiesa, Juan José. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duhart, José Manuel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Casiraghi, Leandro Pablo. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Paladino, Natalia. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bussi, Ivana Leda. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Golombek, Diego Andrés. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Search for anomalous production of di-lepton events with missing transverse momentum in e(+)e(-) collisions at root s = 161 and 172 GeV

    Get PDF
    Events containing a pair of charged leptons and significant missing transverse momentum are selected from a data sample corresponding to a total integrated luminosity of 20.6 pb^-1 at centre-of-mass energies of 161 GeV and 172 GeV. The observed number of events, four at 161 GeV and nine at 172 GeV, is consistent with the number expected from Standard Model processes, predominantly arising from W+W- production with each W decaying leptonically. This topology is also an experimental signature for the pair production of new particles that decay to a charged lepton accompanied by one or more invisible particles. Further event selection criteria are described that optimise the sensitivity to particular new physics channels. No evidence for new phenomena is observed and limits on the production of scalar charged lepton pairs and other new particles are presented

    Tests of the standard model and constraints on new physics from measurements of fermion-pair production at 130-172GeV at LEP

    Get PDF
    Production of events with hadronic and leptonic final states has been measured in e(+)e(-) collisions at centre-of-mass energies of 130-172 GeV, using the OPAL detector at LEP. Cross-sections and leptonic forward-backward asymmetries are presented, both including and excluding the dominant production of radiative Z gamma events, and compared to Standard Model expectations. The ratio R-b of the cross-section for production to the hadronic cross-section has been measured. In a model-independent fit to the Z lineshape, the data have been used to obtain an improved precision on the measurement of gamma-Z interference. The energy dependence of alpha(em) has been investigated. The measurements have also been used to obtain limits on extensions of the Standard Model described by effective four-fermion contact interactions, to search for t-channel contributions from new massive particles and to place limits on gaugino pair production with subsequent decay of the gaugino into a light gluino and a quark pair

    Environmental Effect of Climate Change Pollutants Loading on Structural Steel Stresses

    No full text
    Human activities on earth it is observed is having negative impact on the continuous existence of life on the planet. This is as a result of build-up of gases that tend to affect life and well-being of plants and animals including structures put in place to support them. Structural failure as a result of pollutant exposure does not occur unless where there is wrong design of the structure or the owner has not carried out routine maintenance. The effect of such loss on structure in place need to be further studied to engender better understanding of structural failure possibilities or its reliability. This work looked at the effect of gases such as SO2 and humidity known as climate change gases in the air and their effect on steel structures, specifically bridges, in rural, urban and industrial locations. It was shown also that for these three types of locations, the moment resistance and shear resistance of structures overtime will decrease by 3% and 4.6% respectively. However, the deflection of the same structure will increase by 1% over the same time range. The implication will be an increase in the cost of design and construction as a result of increased thickness of steel structures and additional paint coating to reduce this negative effec

    Environmental Effect of Climate Change Pollutants Loading on Structural Steel Stresses

    No full text
    Human activities on earth it is observed is having negative impact on the continuous existence of life on the planet. This is as a result of build-up of gases that tend to affect life and well-being of plants and animals including structures put in place to support them. Structural failure as a result of pollutant exposure does not occur unless where there is wrong design of the structure or the owner has not carried out routine maintenance. The effect of such loss on structure in place need to be further studied to engender better understanding of structural failure possibilities or its reliability. This work looked at the effect of gases such as SO2 and humidity known as climate change gases in the air and their effect on steel structures, specifically bridges, in rural, urban and industrial locations. It was shown also that for these three types of locations, the moment resistance and shear resistance of structures overtime will decrease by 3% and 4.6% respectively. However, the deflection of the same structure will increase by 1% over the same time range. The implication will be an increase in the cost of design and construction as a result of increased thickness of steel structures and additional paint coating to reduce this negative effec
    • 

    corecore