10 research outputs found

    Step‐by‐step diagnosis and management of the nocebo/drucebo effect in statin‐associated muscle symptoms patients: a position paper from the International Lipid Expert Panel (ILEP)

    Get PDF
    Statin intolerance is a clinical syndrome whereby adverse effects (AEs) associated with statin therapy [most commonly statin-associated muscle symptoms (SAMS)] result in the discontinuation of therapy and consequently increase the risk of adverse cardiovascular outcomes. However, complete statin intolerance occurs in only a small minority of treated patients (estimated prevalence of only 3–5%). Many perceived AEs are misattributed (e.g. physical musculoskeletal injury and inflammatory myopathies), and subjective symptoms occur as a result of the fact that patients expect them to do so when taking medicines (the nocebo/drucebo effect)—what might be truth even for over 50% of all patients with muscle weakness/pain. Clear guidance is necessary to enable the optimal management of plasma in real-world clinical practice in patients who experience subjective AEs. In this Position Paper of the International Lipid Expert Panel (ILEP), we present a step-by-step patient-centred approach to the identification and management of SAMS with a particular focus on strategies to prevent and manage the nocebo/drucebo effect and to improve long-term compliance with lipid-lowering therapy

    Developing and Validating a Model to Assess Sewer Sediment Issues from Changing Wastewater Inflows and Concentration

    No full text
    Sewers are critical for the maintenance of both public and environmental health in urban areas through their transport of wastewater for treatment. Despite significant costs associated with excess sewer solids deposition causing blockages and reduced hydraulic capacity, there are still gaps in our knowledge of sewer solids processes. This is particularly a concern with the implementation of Decentralised Water Recycling (DWR) and further reductions in per capita water consumption. This will reduce wastewater inflow to and increase the concentration of solids in sewers, leading to increased blockages and reduced hydraulic capacities in sewers. Sewer solids can be divided into two main groups based on their size: gross solids and sewer sediments. This paper details the development, initial calibration, and validation of a comprehensive sewer sediment transport model to assist in quantifying the impacts of changing wastewater inflows and concentration. This model aims to facilitate the transition to more sustainable cities by reducing the uncertainties in the implementation of sustainable water measures, such as DWR and water use reduction. OpenFOAM, an open-source computational fluid dynamics package, was used to develop the sewer sediment model. This model has components that model flow, suspended sediment transport, bed load transport, and deposited bed development. Model calibration, using a square hydraulic flume, shows model results for flow and sediment transport are promising. Model validation experiments in a pilot-scale sewer system show that reducing sewer inflows are going to be a concern for sewer solids, especially in non-ideal or ageing sewers

    The Application of Soft Computing Models and Empirical Formulations for Hydraulic Structure Scouring Depth Simulation: A Comprehensive Review, Assessment and Possible Future Research Direction

    No full text
    corecore