21 research outputs found

    Phylo: A Citizen Science Approach for Improving Multiple Sequence Alignment

    Get PDF
    BACKGROUND: Comparative genomics, or the study of the relationships of genome structure and function across different species, offers a powerful tool for studying evolution, annotating genomes, and understanding the causes of various genetic disorders. However, aligning multiple sequences of DNA, an essential intermediate step for most types of analyses, is a difficult computational task. In parallel, citizen science, an approach that takes advantage of the fact that the human brain is exquisitely tuned to solving specific types of problems, is becoming increasingly popular. There, instances of hard computational problems are dispatched to a crowd of non-expert human game players and solutions are sent back to a central server. METHODOLOGY/PRINCIPAL FINDINGS: We introduce Phylo, a human-based computing framework applying "crowd sourcing" techniques to solve the Multiple Sequence Alignment (MSA) problem. The key idea of Phylo is to convert the MSA problem into a casual game that can be played by ordinary web users with a minimal prior knowledge of the biological context. We applied this strategy to improve the alignment of the promoters of disease-related genes from up to 44 vertebrate species. Since the launch in November 2010, we received more than 350,000 solutions submitted from more than 12,000 registered users. Our results show that solutions submitted contributed to improving the accuracy of up to 70% of the alignment blocks considered. CONCLUSIONS/SIGNIFICANCE: We demonstrate that, combined with classical algorithms, crowd computing techniques can be successfully used to help improving the accuracy of MSA. More importantly, we show that an NP-hard computational problem can be embedded in casual game that can be easily played by people without significant scientific training. This suggests that citizen science approaches can be used to exploit the billions of "human-brain peta-flops" of computation that are spent every day playing games. Phylo is available at: http://phylo.cs.mcgill.ca

    A Path for the Implementation of Best Practices for Software Requirements Management Process Using a Multimodel Environment

    No full text
    Continuous improvement is one of the topics of interest for organizations seeking positioning opportunities in the world market. However, software development organizations have high levels of difficulty to implement best practices that address continuous improvement. This paper presents a path to follow to facilitate the work of continuous improvement in a software development organization and that seeks to implement best practices in the software requirements management process. The path is drawn from an analysis of software process improvement models and standards related to software development best practices, under a multimodel environment. The path is structured with a set of techniques, tools, activities, and outputs associated with identified best practices, to facilitate the implementation of improvements in the software requirements management process. Besides, the established path is proposed as an alternative to facilitate the process improvement using a multimodel environment, this way allows establishing balance and instances of collaboration among best practices independent of the model or standard to be implemented. © 2020, Springer Nature Switzerland AG

    Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1

    No full text
    Since the early 1990s, numerous cancer Ag have been defined and for a handful of these there is now some clinical experience, which has made it possible to assess their value as targets for cancer immunotherapy. The cancer-testis Ag have been particularly attractive because their expression is limited to cancer and virtually no non-malignant cells apart from germ cells and trophoblast. Among these, NY-ESO-1 has been the focus of our attention. The exceptional immunogenicity of this Ag coupled with its widespread distribution among many cancer types make it a very good vaccine candidate, with the potential to be used in vaccines against many types of malignancies. This article reviews emerging knowledge about the biology of NY-ESO-1 and experience with the early clinical development of vaccines directed against NY-ESO-1. These early studies have yielded a wealth of information about the immunology of NY-ESO-1 and set the scene for future clinical strategies for immune targeting of cancer
    corecore