26 research outputs found

    A Systems Approach for Tumor Pharmacokinetics

    Get PDF
    Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.National Institutes of Health (U.S.) (grant T32 CA079443

    An intervention program to reduce the number of hospitalizations of elderly patients in a primary care clinic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The elderly population consumes a large share of medical resources in the western world. A significant portion of the expense is related to hospitalizations.</p> <p>Objectives</p> <p>To evaluate an intervention program designed to reduce the number of hospitalization of elderly patients by a more optimal allocation of resources in primary care.</p> <p>Methods</p> <p>A multidimensional intervention program was conducted that included the re-engineering of existing work processes with a focus on the management of patient problems, improving communication with outside agencies, and the establishment of a system to monitor quality of healthcare parameters. Data on the number of hospitalizations and their cost were compared before and after implementation of the intervention program.</p> <p>Results</p> <p>As a result of the intervention the mean expenditure per elderly patient was reduced by 22.5%. The adjusted number of hospitalizations/1,000 declined from 15.1 to 10.7 (29.3%). The number of adjusted hospitalization days dropped from 132 to 82 (37.9%) and the mean hospitalization stay declined from 8.2 to 6.7 days (17.9%). The adjusted hospitalization cost (/1,000patients)droppedfrom/1,000 patients) dropped from 32,574 to $18,624 (42.8%). The overall clinic expense, for all age groups, dropped by 9.9%.</p> <p>Conclusion</p> <p>Implementation of the intervention program in a single primary care clinic led to a reduction in hospitalizations for the elderly patient population and to a more optimal allocation of healthcare resources.</p

    FDG uptake is a surrogate marker for defining the optimal biological dose of the mTOR inhibitor everolimus in vivo

    Get PDF
    This study aimed to test whether [18F]fluoro-D-glucose (FDG) uptake of tumours measured by positron emission tomography (PET) can be used as surrogate marker to define the optimal biological dose (OBD) of mTOR inhibitors in vivo. Everolimus at 0.05, 0.5, 5 and 15 mg kg−1 per day was administered to gastric cancer xenograft-bearing mice for 23 days and FDG uptake of tumours was measured using PET from day 1 to day 8. To provide standard comparators for FDG uptake, tumour volume, S6 protein phosphorylation, Ki-67 staining and everolimus blood levels were evaluated. Everolimus blood levels increased in a dose-dependent manner but antitumour activity of everolimus reached a plateau at doses ⩾5 mg kg−1 per day (tumour volume treated vs control (T/C): 51% for 5 mg kg−1 per day and 57% for 15 mg kg−1 per day). Correspondingly, doses ⩾5 mg kg−1 per day led to a significant reduction in FDG uptake of tumours. Dose escalation above 5 mg kg−1 per day did not reduce FDG uptake any further (FDG uptake T/C: 49% for 5 mg kg−1 per day and 52% for 15 mg kg−1 per day). Differences in S6 protein phosphorylation and Ki-67 index reflected tumour volume and changes in FDG uptake but did not reach statistical significance. In conclusion, FDG uptake might serve as a surrogate marker for dose finding studies for mTOR inhibitors in (pre)clinical trials

    Fluid challenges in intensive care: the FENICE study A global inception cohort study

    Get PDF
    Fluid challenges (FCs) are one of the most commonly used therapies in critically ill patients and represent the cornerstone of hemodynamic management in intensive care units. There are clear benefits and harms from fluid therapy. Limited data on the indication, type, amount and rate of an FC in critically ill patients exist in the literature. The primary aim was to evaluate how physicians conduct FCs in terms of type, volume, and rate of given fluid; the secondary aim was to evaluate variables used to trigger an FC and to compare the proportion of patients receiving further fluid administration based on the response to the FC.This was an observational study conducted in ICUs around the world. Each participating unit entered a maximum of 20 patients with one FC.2213 patients were enrolled and analyzed in the study. The median [interquartile range] amount of fluid given during an FC was 500 ml (500-1000). The median time was 24 min (40-60 min), and the median rate of FC was 1000 [500-1333] ml/h. The main indication for FC was hypotension in 1211 (59 %, CI 57-61 %). In 43 % (CI 41-45 %) of the cases no hemodynamic variable was used. Static markers of preload were used in 785 of 2213 cases (36 %, CI 34-37 %). Dynamic indices of preload responsiveness were used in 483 of 2213 cases (22 %, CI 20-24 %). No safety variable for the FC was used in 72 % (CI 70-74 %) of the cases. There was no statistically significant difference in the proportion of patients who received further fluids after the FC between those with a positive, with an uncertain or with a negatively judged response.The current practice and evaluation of FC in critically ill patients are highly variable. Prediction of fluid responsiveness is not used routinely, safety limits are rarely used, and information from previous failed FCs is not always taken into account

    Cellular uptake of PET tracers of glucose metabolism and hypoxia and their linkage.

    No full text
    Item does not contain fulltextPURPOSE: Tumour hypoxia and elevated glycolysis (Warburg effect) predict poor prognosis. Each parameter is assessable separately with positron emission tomography, but they are linked through anaerobic glycolysis (Pasteur effect). Here, we compare the oxygenation-dependent retention of fluoroazomycin arabinoside ([(18)F]FAZA), a promising but not well-characterised hypoxia-specific tracer, and fluorodeoxyglucose ([(18)F]FDG) in four carcinoma cell lines. METHODS: Cells seeded on coverslips were positioned in modified Petri dishes that allow physically separated cells to share the same tracer-containing medium pool. Following oxic, hypoxic or anoxic tracer incubation, coverslips were analysed for radioactivity ([(18)F]FDG + [(18)F]FAZA) or re-incubated in tracer-free oxygenated medium and then measured ([(18)F]FAZA). Next, we tested the reliability of [(18)F]FDG as a relative measure of glucose metabolic rate. Finally, from two cell lines, xenografts were established in mice, and the tracer distribution between hypoxic and well-oxygenated areas were deduced from tissue sections. RESULTS: Three hours of anoxia strongly stimulated [(18)F]FAZA retention with anoxic-to-oxic uptake ratios typically above 30. Three out of four cell lines displayed similar selectivity of [(18)F]FDG versus glucose, but oxic uptake and anoxic-to-oxic uptake ratio of [(18)F]FDG varied considerably. Although less pronounced, [(18)F]FAZA also showed superior in vivo hypoxia specificity compared with [(18)F]FDG. CONCLUSIONS: [(18)F]FAZA displays excellent in vitro characteristics for hypoxia imaging including modest cell-to-cell line variability and no binding in oxic cells. In contrast, the usability of [(18)F]FDG as a surrogate marker for hypoxia is questionable due to large variations in baseline (oxic) glucose metabolism and magnitudes of the Pasteur effects
    corecore