134 research outputs found
Does voice amplification increase intelligibility in people with Parkinson's disease
Background/Aims:
Patients with speech intelligibility difficulties associated with a quiet voice are often prescribed a voice amplifier. This study examined whether artificial voice amplification improved intelligibility in people with Parkinson's disease and whether there was an optimum increase that brought about best improvement.
Methods:
Twelve people diagnosed with Parkinson's disease (mild=4, moderate intelligibility difficulties=8) and five age-matched controls read low predictability sentences in their habitual voice. Audio recordings were digitally manipulated to create samples at +2.3 dB, +5 dB and +10 dB amplification. Listeners transcribed the recorded sentences. The percentage of words correctly identified was compared across levels of amplification and groups.
Results:
Participants with moderate Parkinson's disease were significantly less intelligible than controls in all conditions. Moderately, but not mildly affected participants with Parkinson's disease showed higher intelligibility in the amplified conditions, though statistically significantly only at +2.3 dB. No other significant effects of intensity or interactions with groups were found. At an individual level, some participants showed clear advantages of amplification.
Conclusion:
Based on results from the current participants, potential benefits of amplification cannot be promised to all people with Parkinson's disease. Nevertheless, several provisos regarding methods employed suggest the question can gainfully be pursued using broader measures to assess effects of amplification with more varied groups of people with Parkinson's disease and with other aetiologies where voice production can be an issue
Zebrafish Larvae Exhibit Rheotaxis and Can Escape a Continuous Suction Source Using Their Lateral Line
Zebrafish larvae show a robust behavior called rheotaxis, whereby they use their lateral line system to orient upstream in the presence of a steady current. At 5 days post fertilization, rheotactic larvae can detect and initiate a swimming burst away from a continuous point-source of suction. Burst distance and velocity increase when fish initiate bursts closer to the suction source where flow velocity is higher. We suggest that either the magnitude of the burst reflects the initial flow stimulus, or fish may continually sense flow during the burst to determine where to stop. By removing specific neuromasts of the posterior lateral line along the body, we show how the location and number of flow sensors play a role in detecting a continuous suction source. We show that the burst response critically depends on the presence of neuromasts on the tail. Flow information relayed by neuromasts appears to be involved in the selection of appropriate behavioral responses. We hypothesize that caudally located neuromasts may be preferentially connected to fast swimming spinal motor networks while rostrally located neuromasts are connected to slow swimming motor networks at an early age
Characterization of Inhibitory Anti-Duffy Binding Protein II Immunity: Approach to Plasmodium vivax Vaccine Development in Thailand
Plasmodium vivax Duffy binding protein region II (DBPII) is an important vaccine candidate for antibody-mediated immunity against vivax malaria. A significant challenge for vaccine development of DBPII is its highly polymorphic nature that alters sensitivity to neutralizing antibody responses. Here, we aim to characterize naturally-acquired neutralizing antibodies against DBPII in individual Thai residents to give insight into P. vivax vaccine development in Thailand. Anti-DBPII IgG significantly increased in acute vivax infections compared to uninfected residents and naive controls. Antibody titers and functional anti-DBPII inhibition varied widely and there was no association between titer and inhibition activity. Most high titer plasmas had only a moderate to no functional inhibitory effect on DBP binding to erythrocytes, indicating the protective immunity against DBPII binding is strain specific. Only 5 of 54 samples were highly inhibitory against DBP erythrocyte-binding function. Previously identified target epitopes of inhibitory anti-DBPPII IgG (H1, H2 and H3) were localized to the dimer interface that forms the DARC binding pocket. Amino acid polymorphisms (monomorphic or dimorphic) in H1 and H3 protective epitopes change sensitivity of immune inhibition by alteration of neutralizing antibody recognition. The present study indicates Thai variant H1.T1 (R308S), H3.T1 (D384G) and H3.T3 (K386N) are the most important variants for a DBPII candidate vaccine needed to protect P. vivax in Thai residents
Determination of the Molecular Basis for a Limited Dimorphism, N417K, in the Plasmodium vivax Duffy-Binding Protein
Invasion of human red blood cells by Plasmodium merozoites is vital for replication and survival of the parasite and, as such, is an attractive target for therapeutic intervention. Merozoite invasion is mediated by specific interactions between parasite ligands and host erythrocyte receptors. The P. vivax Duffy-binding protein (PvDBP) is heavily dependent on the interaction with the human Duffy blood group antigen/receptor for chemokines (DARC) for invasion. Region II of PvDBP contains many allelic polymorphisms likely to have arisen by host immune selection. Successful vaccine development necessitates a deeper understanding of the role of these polymorphisms in both parasite function and evasion of host immunity. A 3D structure of the homologous P. knowlesi DBP predicts that most variant residues are surface-exposed, including N417K, which is a dimorphic residue change that has previously been shown to be part of a linked haplotype that alters DBP sensitivity to inhibitory antibody. In natural isolates only two residues are found at this site, asparagine (N) and lysine (K). Site-directed mutagenesis of residue 417 was used to create a panel of 20 amino acid variants that were then examined for their binding phenotype and response to immune sera. Our results suggest that the observed dimorphism likely arose due to both structural requirements and immune selection pressure. To our knowledge, this is the first exhaustive examination of this kind of the role of a single amino acid residue in antigenic character and binding ability. Our results demonstrate that a single amino acid substitution can dramatically alter both the ability of the PvDBP to bind to human erythrocytes and its antigenic character
High Extracellular Ca2+ Stimulates Ca2+-Activated Cl− Currents in Frog Parathyroid Cells through the Mediation of Arachidonic Acid Cascade
Elevation of extracellular Ca2+ concentration induces intracellular Ca2+ signaling in parathyroid cells. The response is due to stimulation of the phospholipase C/Ca2+ pathways, but the direct mechanism responsible for the rise of intracellular Ca2+ concentration has remained elusive. Here, we describe the electrophysiological property associated with intracellular Ca2+ signaling in frog parathyroid cells and show that Ca2+-activated Cl− channels are activated by intracellular Ca2+ increase through an inositol 1,4,5-trisphophate (IP3)-independent pathway. High extracellular Ca2+ induced an outwardly-rectifying conductance in a dose-dependent manner (EC50∼6 mM). The conductance was composed of an instantaneous time-independent component and a slowly activating time-dependent component and displayed a deactivating inward tail current. Extracellular Ca2+-induced and Ca2+ dialysis-induced currents reversed at the equilibrium potential of Cl− and were inhibited by niflumic acid (a specific blocker of Ca2+-activated Cl− channel). Gramicidin-perforated whole-cell recording displayed the shift of the reversal potential in extracellular Ca2+-induced current, suggesting the change of intracellular Cl− concentration in a few minutes. Extracellular Ca2+-induced currents displayed a moderate dependency on guanosine triphosphate (GTP). All blockers for phospholipase C, diacylglycerol (DAG) lipase, monoacylglycerol (MAG) lipase and lipoxygenase inhibited extracellular Ca2+-induced current. IP3 dialysis failed to induce conductance increase, but 2-arachidonoylglycerol (2-AG), arachidonic acid and 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid (12(S)-HPETE) dialysis increased the conductance identical to extracellular Ca2+-induced conductance. These results indicate that high extracellular Ca2+ raises intracellular Ca2+ concentration through the DAG lipase/lipoxygenase pathway, resulting in the activation of Cl− conductance
Pyogenic spondylitis
Pyogenic spondylitis is a neurological and life threatening condition. It encompasses a broad range of clinical entities, including pyogenic spondylodiscitis, septic discitis, vertebral osteomyelitis, and epidural abscess. The incidence though low appears to be on the rise. The diagnosis is based on clinical, radiological, blood and tissue cultures and histopathological findings. Most of the cases can be treated non-operatively. Surgical treatment is required in 10–20% of patients. Anterior decompression, debridement and fusion are generally recommended and instrumentation is acceptable after good surgical debridement with postoperative antibiotic cover
Spinal infection: state of the art and management algorithm
Spinal infection is a rare pathology although a concerning rising incidence has been observed in recent years. This increase might reflect a progressively more susceptible population but also the availability of increased diagnostic accuracy. Yet, even with improved diagnosis tools and procedures, the delay in diagnosis remains an important issue. This review aims to highlight the importance of a methodological attitude towards accurate and prompt diagnosis using an algorithm to aid on spinal infection management.
METHODS:
Appropriate literature on spinal infection was selected using databases from the US National Library of Medicine and the National Institutes of Health.
RESULTS:
Literature reveals that histopathological analysis of infected tissues is a paramount for diagnosis and must be performed routinely. Antibiotic therapy is transversal to both conservative and surgical approaches and must be initiated after etiological diagnosis. Indications for surgical treatment include neurological deficits or sepsis, spine instability and/or deformity, presence of epidural abscess and upon failure of conservative treatment.
CONCLUSIONS:
A methodological assessment could lead to diagnosis effectiveness of spinal infection. Towards this, we present a management algorithm based on literature findings
The Human Phenotype Ontology in 2024: phenotypes around the world
\ua9 The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. The Human Phenotype Ontology (HPO) is a widely used resource that comprehensively organizes and defines the phenotypic features of human disease, enabling computational inference and supporting genomic and phenotypic analyses through semantic similarity and machine learning algorithms. The HPO has widespread applications in clinical diagnostics and translational research, including genomic diagnostics, gene-disease discovery, and cohort analytics. In recent years, groups around the world have developed translations of the HPO from English to other languages, and the HPO browser has been internationalized, allowing users to view HPO term labels and in many cases synonyms and definitions in ten languages in addition to English. Since our last report, a total of 2239 new HPO terms and 49235 new HPO annotations were developed, many in collaboration with external groups in the fields of psychiatry, arthrogryposis, immunology and cardiology. The Medical Action Ontology (MAxO) is a new effort to model treatments and other measures taken for clinical management. Finally, the HPO consortium is contributing to efforts to integrate the HPO and the GA4GH Phenopacket Schema into electronic health records (EHRs) with the goal of more standardized and computable integration of rare disease data in EHRs
- …