32 research outputs found

    1-methylnicotinamide and its structural analog 1,4-dimethylpyridine for the prevention of cancer metastasis

    Get PDF
    Background: 1-methylnicotinamide (1-MNA), an endogenous metabolite of nicotinamide, has recently gained interest due to its anti-inflammatory and anti-thrombotic activities linked to the COX-2/PGI2 pathway. Given the previously reported anti-metastatic activity of prostacyclin (PGI2), we aimed to assess the effects of 1-MNA and its structurally related analog, 1,4-dimethylpyridine (1,4-DMP), in the prevention of cancer metastasis. Methods: All the studies on the anti-tumor and anti-metastatic activity of 1-MNA and 1,4-DMP were conducted using the model of murine mammary gland cancer (4T1) transplanted either orthotopically or intravenously into female BALB/c mouse. Additionally, the effect of the investigated molecules on cancer cell-induced angiogenesis was estimated using the matrigel plug assay utilizing 4T1 cells as a source of pro-angiogenic factors. Results: Neither 1-MNA nor 1,4-DMP, when given in a monotherapy of metastatic cancer, influenced the growth of 4T1 primary tumors transplanted orthotopically; however, both compounds tended to inhibit 4T1 metastases formation in lungs of mice that were orthotopically or intravenously inoculated with 4T1 or 4T1-luc2-tdTomato cells, respectively. Additionally, while 1-MNA enhanced tumor vasculature formation and markedly increased PGI2 generation, 1,4-DMP did not have such an effect. The anti-metastatic activity of 1-MNA and 1,4-DMP was further confirmed when both agents were applied with a cytostatic drug in a combined treatment of 4T1 murine mammary gland cancer what resulted in up to 80 % diminution of lung metastases formation. Conclusions: The results of the studies presented below indicate that 1-MNA and its structural analog 1,4-DMP prevent metastasis and might be beneficially implemented into the treatment of metastatic breast cancer to ensure a comprehensive strategy of metastasis control

    Cross-Species Comparison of Genes Related to Nutrient Sensing Mechanisms Expressed along the Intestine

    Get PDF
    Introduction Intestinal chemosensory receptors and transporters are able to detect food-derived molecules and are involved in the modulation of gut hormone release. Gut hormones play an important role in the regulation of food intake and the control of gastrointestinal functioning. This mechanism is often referred to as “nutrient sensing”. Knowledge of the distribution of chemosensors along the intestinal tract is important to gain insight in nutrient detection and sensing, both pivotal processes for the regulation of food intake. However, most knowledge is derived from rodents, whereas studies in man and pig are limited, and cross-species comparisons are lacking. Aim To characterize and compare intestinal expression patterns of genes related to nutrient sensing in mice, pigs and humans. Methods Mucosal biopsy samples taken at six locations in human intestine (n = 40) were analyzed by qPCR. Intestinal scrapings from 14 locations in pigs (n = 6) and from 10 locations in mice (n = 4) were analyzed by qPCR and microarray, respectively. The gene expression of glucagon, cholecystokinin, peptide YY, glucagon-like peptide-1 receptor, taste receptor T1R3, sodium/glucose cotransporter, peptide transporter-1, GPR120, taste receptor T1R1, GPR119 and GPR93 was investigated. Partial least squares (PLS) modeling was used to compare the intestinal expression pattern between the three species. Results and conclusion The studied genes were found to display specific expression patterns along the intestinal tract. PLS analysis showed a high similarity between human, pig and mouse in the expression of genes related to nutrient sensing in the distal ileum, and between human and pig in the colon. The gene expression pattern was most deviating between the species in the proximal intestine. Our results give new insights in interspecies similarities and provide new leads for translational research and models aiming to modulate food intake processes in man

    Effective and safe proton pump inhibitor therapy in acid-related diseases – A position paper addressing benefits and potential harms of acid suppression

    Full text link

    Increased proton pump inhibitor and NSAID exposure in irritable bowel syndrome: results from a case-control study

    No full text
    Abstract Background Patients with irritable bowel syndrome (IBS) seen by a gastroenterologist often utilize medications that may alter intestinal homeostasis. The question arises whether exposure to these drugs is associated with the development of IBS symptoms. Aim of this study was therefore to assess the use of PPIs and NSAIDs in patients with IBS versus controls. Methods Cases of IBS from the last 5 years were reviewed. All patients having had at least one prescription for a particular drug (PPIs, NSAIDs, SSRIs, diuretics, ACE inhibitors) in the 6 months prior to the time of initial symptom onset were considered exposed. The control group consisted of individuals randomly selected from the general population. Results 287 cases of IBS were retrieved for analysis together with 287 age and sex-matched controls. Exposure to PPIs and NSAIDs was significantly higher in IBS patients, whereas no association between ACE inhibitor use and IBS was found. PPIs were not significantly associated when excluding patients with gastrointestinal reflux disease or functional dyspepsia. Exposure to SSRIs was also positively associated with IBS, but only when patients with psychiatric comorbidity were included in the analyses. Conclusions Medications that may alter intestinal homeostasis such as NSAIDs and PPIs were more frequently used in IBS patients compared to controls. This association might be relevant for everyday clinical practice, but it is remains to be elucidated whether this association is of etiological nature.</p

    Catalytic chain transfer copolymerization of methyl methacrylate and methyl acrylate

    No full text
    Bis(aqua)bis((difluoroboryl)dimethylglyoximate)cobalt(II) (COBF) is an effective catalytic chain transfer agent in the copolymn. of Me acrylate (MA) and Me methacrylate (MMA). The chain transfer activity depends on the fraction of MMA in the monomer feed and the total radical concn. The polymn. can be described by a model that combines features of catalytic chain transfer for MMA homopolymn. and cobalt mediated controlled radical polymn. of MA. According to the model part of the COBF is covalently bonded to MA-ended polymeric radicals and cannot take part in the chain transfer step. The model can also account for the obsd. inhibition time that occurs at high chain transfer agent concn. and low fraction of MMA in the monomer feed. [on SciFinder (R)

    Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis

    No full text
    BACKGROUND: The gut-liver axis is considered to play a critical role in the development and progression of nonalcoholic fatty liver disease (NAFLD). The integrity of the epithelial barrier is crucial to protect the liver against the invasion of microbial products from the gut, although its exact role in NAFLD onset and progression is not clear. METHODS: We performed a systematic review and meta-analysis of studies that addressed the intestinal permeability (IP) in association with NAFLD presence or severity as defined by the presence of nonalcoholic steatohepatitis (NASH) and the degree of steatosis, hepatic inflammation or fibrosis. A total of 14 studies were eligible for inclusion. RESULTS: Studies investigating IP in adult (n = 6) and paediatric (n = 8) NAFLD showed similar results. Thirteen of the included studies focussed on small IP, two studies on whole gut permeability and none on colonic permeability. In the pooled analysis, NAFLD patients showed an increased small intestinal permeability compared to healthy controls based on dual sugar tests (standardized mean difference 0.79, 95% CI 0.49-1.08) and serum zonulin levels (standardized mean difference 1.04 ng/mL, 95% CI 0.40-1.68). No clear difference in IP was observed between simple steatosis and NASH patients. Furthermore, whole gut and small intestinal permeability increased with the degree of hepatic steatosis in 4/4 studies, while no association with hepatic inflammation or fibrosis was observed. CONCLUSION: Based on the limited number of studies available, IP appears to be increased in NAFLD patients compared to healthy controls and is associated with the degree of hepatic steatosis.status: publishe
    corecore