160 research outputs found

    Kyphosis and paraspinal muscle composition in older men: a cross-sectional study for the osteoporotic fractures in men (MrOS) research group

    Get PDF
    BACKGROUND: The prevalence of hyperkyphosis is increased in older men; however, risk factors other than age and vertebral fractures are not well established. We previously reported that poor paraspinal muscle composition contributes to more severe kyphosis in a cohort of both older men and women. METHODS: To specifically evaluate this association in older men, we conducted a cross-sectional study to evaluate the association of paraspinal muscle composition and degree of thoracic kyphosis in an analytic cohort of 475 randomly selected participants from the Osteoporotic Fractures in Men (MrOS) study with baseline abdominal quantitative computed tomography (QCT) scans and plain thoracic radiographs. Baseline abdominal QCT scans were used to obtain abdominal body composition measurements of paraspinal muscle and adipose tissue distribution. Supine lateral spine radiographs were used to measure Cobb angle of kyphosis. We examined the linear association of muscle volume, fat volume and kyphosis using loess plots. Multivariate linear models were used to investigate the association between muscle and kyphosis using total muscle volume, as well as individual components of the total muscle volume, including adipose and muscle compartments alone, controlling for age, height, vertebral fractures, and total hip bone mineral density (BMD). We examined these associations among those with no prevalent vertebral fracture and those with BMI < 30 kg/m(2). RESULTS: Among men in the analytic cohort, means (SD) were 74 (SD = 5.9) years for age, and 37.5 (SD = 11.9) degrees for Cobb angle of kyphosis. Men in the lowest tertile of total paraspinal muscle volume had greater mean Cobb angle than men in the highest tertile, although test of linear trend across tertiles did not reach statistical significance. Neither lower paraspinal skeletal muscle volume (p-trend = 0.08), or IMAT (p-trend = 0.96) was associated with greater kyphosis. Results were similar among those with no prevalent vertebral fractures. However, among men with BMI < 30 kg/m(2), those in the lowest tertile of paraspinal muscle volume had greater adjusted mean kyphosis (40.0, 95% CI: 37.8 – 42.1) compared to the highest tertile (36.3, 95% CI: 34.2 – 38.4). CONCLUSIONS: These results suggest that differences in body composition may potentially influence kyphosis

    INSIG2 gene polymorphism is associated with increased subcutaneous fat in women and poor response to resistance training in men

    Get PDF
    Background A common SNP upstream of the INSIG2 gene, rs7566605 (g.-10,1025G\u3eC, Chr2:118,552,255, NT_022135.15), was reported to be associated with obesity (Body Mass Index, [BMI]) in a genome-wide association scan using the Framingham Heart Study but has not been reproduced in other cohorts. As BMI is a relatively insensitive measure of adiposity that is subject to many confounding variables, we sought to determine the relationship between the INSIG2 SNP and subcutaneous fat volumes measured by MRI in a young adult population. Methods We genotyped the INSIG2 SNP rs7566605 in college-aged population enrolled in a controlled resistance-training program, (the Functional Polymorphism Associated with Human Muscle Size and Strength, FAMuSS cohort, n = 752 volunteers 18–40 yrs). In this longitudinal study, we examined the effect of the INSIG2 polymorphism on subcutaneous fat and muscle volumes of the upper arm measured by magnetic resonance imaging (MRI) before and after 12 wks of resistance training. Gene/phenotype associations were tested using an analysis of covariance model with age and weight as covariates. Further, the % variation in each phenotype attributable to genotype was determined using hierarchical models and tested with a likelihood ratio test. Results Women with a copy of the C allele had higher levels of baseline subcutaneous fat (GG: n = 139; 243473 ± 5713 mm3 vs. GC/CC: n = 181; 268521 ± 5003 mm3; p = 0.0011); but men did not show any such association. Men homozygous for the G ancestral allele showed a loss of subcutaneous fat, while those with one or two copies of the C allele gained a greater percentage of subcutaneous fat with resistance training (GG: n = 103; 1.02% ± 1.74% vs. GC/CC: n = 93; 6.39% ± 1.82%; p = 0.035). Conclusion Our results show that the INSIG2 rs7566605 polymorphism underlies variation in subcutaneous adiposity in young adult women and suppresses the positive effects of resistance training on men. This supports and extends the original finding that there is an association between measures of obesity and INSIG2 rs7566605 and further implicates this polymorphism in fat regulation

    Do obese but metabolically normal women differ in intra-abdominal fat and physical activity levels from those with the expected metabolic abnormalities? A cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity remains a major public health problem, associated with a cluster of metabolic abnormalities. However, individuals exist who are very obese but have normal metabolic parameters. The aim of this study was to determine to what extent differences in metabolic health in very obese women are explained by differences in body fat distribution, insulin resistance and level of physical activity.</p> <p>Methods</p> <p>This was a cross-sectional pilot study of 39 obese women (age: 28-64 yrs, BMI: 31-67 kg/m<sup>2</sup>) recruited from community settings. Women were defined as 'metabolically normal' on the basis of blood glucose, lipids and blood pressure. Magnetic Resonance Imaging was used to determine body fat distribution. Detailed lifestyle and metabolic profiles of participants were obtained.</p> <p>Results</p> <p>Women with a healthy metabolic profile had lower intra-abdominal fat volume (geometric mean 4.78 l [95% CIs 3.99-5.73] vs 6.96 l [5.82-8.32]) and less insulin resistance (HOMA 3.41 [2.62-4.44] vs 6.67 [5.02-8.86]) than those with an abnormality. The groups did not differ in abdominal subcutaneous fat volume (19.6 l [16.9-22.7] vs 20.6 [17.6-23.9]). A higher proportion of those with a healthy compared to a less healthy metabolic profile met current physical activity guidelines (70% [95% CIs 55.8-84.2] vs 25% [11.6-38.4]). Intra-abdominal fat, insulin resistance and physical activity make independent contributions to metabolic status in very obese women, but explain only around a third of the variance.</p> <p>Conclusion</p> <p>A sub-group of women exists who are metabolically normal despite being very obese. Differences in fat distribution, insulin resistance, and physical activity level are associated with metabolic differences in these women, but account only partially for these differences. Future work should focus on strategies to identify those obese individuals most at risk of the negative metabolic consequences of obesity and on identifying other factors that contribute to metabolic status in obese individuals.</p

    Fat Oxidation, Fitness and Skeletal Muscle Expression of Oxidative/Lipid Metabolism Genes in South Asians: Implications for Insulin Resistance?

    Get PDF
    &lt;p&gt;&lt;b&gt;Background:&lt;/b&gt; South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Methodology/Principal Findings:&lt;/b&gt; Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010); lower VO2max (40.6±6.6 vs 52.4&#177;5.7 ml.kg−1.min−1, p = 0.001); and reduced fat oxidation during submaximal exercise at the same relative (3.77&#177;2.02 vs 6.55&#177;2.60 mg.kg−1.min−1 at 55% VO2max, p = 0.013), and absolute (3.46&#177;2.20 vs 6.00&#177;1.93 mg.kg−1.min−1 at 25 ml O2.kg−1.min−1, p = 0.021), exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10–13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity.&lt;/p&gt; &lt;p&gt;&lt;b&gt;Conclusions/Significance:&lt;/b&gt; These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.&lt;/p&gt

    A whey protein-based multi-ingredient nutritional supplement stimulates gains in lean body mass and strength in healthy older men: A randomized controlled trial

    Get PDF
    Protein and other compounds can exert anabolic effects on skeletal muscle, particularly in conjunction with exercise. The objective of this study was to evaluate the efficacy of twice daily consumption of a protein-based, multi-ingredient nutritional supplement to increase strength and lean mass independent of, and in combination with, exercise in healthy older men. Forty-nine healthy older men (age: 73 ± 1 years [mean ± SEM]; BMI: 28.5 ± 1.5 kg/m2) were randomly allocated to 20 weeks of twice daily consumption of either a nutritional supplement (SUPP; n = 25; 30 g whey protein, 2.5 g creatine, 500 IU vitamin D, 400 mg calcium, and 1500 mg n-3 PUFA with 700 mg as eicosapentanoic acid and 445 mg as docosahexanoic acid); or a control (n = 24; CON; 22 g of maltodextrin). The study had two phases. Phase 1 was 6 weeks of SUPP or CON alone. Phase 2 was a 12 week continuation of the SUPP/CON but in combination with exercise: SUPP + EX or CON + EX. Isotonic strength (one repetition maximum [1RM]) and lean body mass (LBM) were the primary outcomes. In Phase 1 only the SUPP group gained strength (Σ1RM, SUPP: +14 ± 4 kg, CON: +3 ± 2 kg, P < 0.001) and lean mass (LBM, +1.2 ± 0.3 kg, CON: -0.1 ± 0.2 kg, P < 0.001). Although both groups gained strength during Phase 2, upon completion of the study upper body strength was greater in the SUPP group compared to the CON group (Σ upper body 1RM: 119 ± 4 vs. 109 ± 5 kg, P = 0.039). We conclude that twice daily consumption of a multi-ingredient nutritional supplement increased muscle strength and lean mass in older men. Increases in strength were enhanced further with exercise training

    Perivascular Fat and the Microcirculation: Relevance to Insulin Resistance, Diabetes, and Cardiovascular Disease

    Get PDF
    Type 2 diabetes and its major risk factor, obesity, are a growing burden for public health. The mechanisms that connect obesity and its related disorders, such as insulin resistance, type 2 diabetes, and hypertension, are still undefined. Microvascular dysfunction may be a pathophysiologic link between insulin resistance and hypertension in obesity. Many studies have shown that adipose tissue-derived substances (adipokines) interact with (micro)vascular function and influence insulin sensitivity. In the past, research focused on adipokines from perivascular adipose tissue (PVAT). In this review, we focus on the interactions between adipokines, predominantly from PVAT, and microvascular function in relation to the development of insulin resistance, diabetes, and cardiovascular disease

    Weight loss in individuals with metabolic syndrome given DASH diet counseling when provided a low sodium vegetable juice: a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome, a constellation of metabolic risk factors for type 2 diabetes and cardiovascular disease, is one of the fastest growing disease entities in the world. Weight loss is thought to be a key to improving all aspects of metabolic syndrome. Research studies have suggested benefits from diets rich in vegetables and fruits in helping individuals reach and achieve healthy weights.</p> <p>Objective</p> <p>To evaluate the effects of a ready to serve vegetable juice as part of a calorie-appropriate Dietary Approaches to Stop Hypertension (DASH) diet in an ethnically diverse population of people with Metabolic Syndrome on weight loss and their ability to meet vegetable intake recommendations, and on their clinical characteristics of metabolic syndrome (waist circumference, triglycerides, HDL, fasting blood glucose and blood pressure).</p> <p>A secondary goal was to examine the impact of the vegetable juice on associated parameters, including leptin, vascular adhesion markers, and markers of the oxidative defense system and of oxidative stress.</p> <p>Methods</p> <p>A prospective 12 week, 3 group (0, 8, or 16 fluid ounces of low sodium vegetable juice) parallel arm randomized controlled trial. Participants were requested to limit their calorie intake to 1600 kcals for women and 1800 kcals for men and were educated on the DASH diet. A total of 81 (22 men & 59 women) participants with Metabolic Syndrome were enrolled into the study. Dietary nutrient and vegetable intake, weight, height, leptin, metabolic syndrome clinical characteristics and related markers of endothelial and cardiovascular health were measured at baseline, 6-, and 12-weeks.</p> <p>Results</p> <p>There were significant group by time interactions when aggregating both groups consuming vegetable juice (8 or 16 fluid ounces daily). Those consuming juice lost more weight, consumed more Vitamin C, potassium, and dietary vegetables than individuals who were in the group that only received diet counseling (p < 0.05).</p> <p>Conclusion</p> <p>The incorporation of vegetable juice into the daily diet can be a simple and effective way to increase the number of daily vegetable servings. Data from this study also suggest the potential of using a low sodium vegetable juice in conjunction with a calorie restricted diet to aid in weight loss in overweight individuals with metabolic syndrome.</p

    Plasma Metabolomic Profiles Reflective of Glucose Homeostasis in Non-Diabetic and Type 2 Diabetic Obese African-American Women

    Get PDF
    Insulin resistance progressing to type 2 diabetes mellitus (T2DM) is marked by a broad perturbation of macronutrient intermediary metabolism. Understanding the biochemical networks that underlie metabolic homeostasis and how they associate with insulin action will help unravel diabetes etiology and should foster discovery of new biomarkers of disease risk and severity. We examined differences in plasma concentrations of >350 metabolites in fasted obese T2DM vs. obese non-diabetic African-American women, and utilized principal components analysis to identify 158 metabolite components that strongly correlated with fasting HbA1c over a broad range of the latter (r = −0.631; p<0.0001). In addition to many unidentified small molecules, specific metabolites that were increased significantly in T2DM subjects included certain amino acids and their derivatives (i.e., leucine, 2-ketoisocaproate, valine, cystine, histidine), 2-hydroxybutanoate, long-chain fatty acids, and carbohydrate derivatives. Leucine and valine concentrations rose with increasing HbA1c, and significantly correlated with plasma acetylcarnitine concentrations. It is hypothesized that this reflects a close link between abnormalities in glucose homeostasis, amino acid catabolism, and efficiency of fuel combustion in the tricarboxylic acid (TCA) cycle. It is speculated that a mechanism for potential TCA cycle inefficiency concurrent with insulin resistance is “anaplerotic stress” emanating from reduced amino acid-derived carbon flux to TCA cycle intermediates, which if coupled to perturbation in cataplerosis would lead to net reduction in TCA cycle capacity relative to fuel delivery
    corecore