90 research outputs found

    Human Resistin Is a Systemic Immune-Derived Proinflammatory Cytokine Targeting both Leukocytes and Adipocytes

    Get PDF
    The characteristics of human resistin (RETN) are unclear and controversial despite intensive adipose-focused research. Its transcriptional and functional similarity with the murine myeloid-specific and CCAAT/enhancer binding protein epsilon (Cebpe)-dependent gene, resistin-like gamma (Retnlg), is unexplored. We examined the human CEBPE-regulatory pathway by unbiased reference and custom gene expression assays. Real-time RT-PCR analysis demonstrated lack of both the transcriptional factor CEBPE and RETN expression in adipose and muscle cells. In contrast, primary myelocytic samples revealed a concerted CEBPE-RETN transcription that was significantly elevated in inflammatory synoviocytes relative to intact peripheral blood mononuclear cells (PBMC). Mouse Cebpe and Retnlg were predictably expressed in macrophages, whereas Retn was abundant in adipocytes. Quite the opposite, a low and inconsistent RETN transcription was seen in some human white adipose tissue (WAT) biopsies without any relationship to body mass index, insulin sensitivity, or fat depot. However, in these cases, RETN was co-detected with CEBPE and the leukocyte-specific marker, EMR1, indicating the presence of inflammatory cells and their possible resistin-mediated effect on adipocytes. Indeed, addition of human resistin to WAT in culture induced, like in PBMC, the inflammatory cytokines IL6, IL8 and TNF. Importantly, the expression of the adipose-specific markers CEBPA, FABP4 and SLC2A4 was unchanged, while the expected inhibitory effect was seen with TNF. Both cytokines increased the mRNA level of CCL2 and MMP3, which may further promote inflammation in WAT. Thus, the myeloid-restricted nature of CEBPE precludes the expression of RETN in human adipocytes which, however, are targeted by this innate immune-derived proinflammatory cytokine

    Bicistronic Lentiviruses Containing a Viral 2A Cleavage Sequence Reliably Co-Express Two Proteins and Restore Vision to an Animal Model of LCA1

    Get PDF
    The disease processes underlying inherited retinal disease are complex and are not completely understood. Many of the corrective gene therapies designed to treat diseases linked to mutations in genes specifically expressed in photoreceptor cells restore function to these cells but fail to stop progression of the disease. There is growing consensus that effective treatments for these diseases will require delivery of multiple therapeutic proteins that will be selected to treat specific aspects of the disease process. The purpose of this study was to design a lentiviral transgene that reliably expresses all of the proteins it encodes and does so in a consistent manner among infected cells. We show, using both in vitro and in vivo analyses, that bicistronic lentiviral transgenes encoding two fluorescent proteins fused to a viral 2A-like cleavage peptide meet these expression criteria. To determine if this transgene design is suitable for therapeutic applications, we replaced one of the fluorescent protein genes with the gene encoding guanylate cyclase -1 (GC1) and delivered lentivirus carrying this transgene to the retinas of the GUCY1*B avian model of Leber congenital amaurosis – 1 (LCA1). GUCY1*B chickens carry a null mutation in the GC1 gene that disrupts photoreceptor function and causes blindness at hatching, a phenotype that closely matches that observed in humans with LCA1. We found that treatment of these animals with the 2A lentivector encoding GC1 restored vision to these animals as evidenced by the presence of optokinetic reflexes. We conclude that 2A-like peptides, with proper optimization, can be successfully incorporated into therapeutic vectors designed to deliver multiple proteins to neural retinal. These results highlight the potential of this vector design to serve as a platform for the development of combination therapies designed to enhance or prolong the benefits of corrective gene therapies

    Different Effect of Proteasome Inhibition on Vesicular Stomatitis Virus and Poliovirus Replication

    Get PDF
    Proteasome activity is an important part of viral replication. In this study, we examined the effect of proteasome inhibitors on the replication of vesicular stomatitis virus (VSV) and poliovirus. We found that the proteasome inhibitors significantly suppressed VSV protein synthesis, virus accumulation, and protected infected cells from toxic effect of VSV replication. In contrast, poliovirus replication was delayed, but not diminished in the presence of the proteasome inhibitors MG132 and Bortezomib. We also found that inhibition of proteasomes stimulated stress-related processes, such as accumulation of chaperone hsp70, phosphorylation of eIF2α, and overall inhibition of translation. VSV replication was sensitive to this stress with significant decline in replication process. Poliovirus growth was less sensitive with only delay in replication. Inhibition of proteasome activity suppressed cellular and VSV protein synthesis, but did not reduce poliovirus protein synthesis. Protein kinase GCN2 supported the ability of proteasome inhibitors to attenuate general translation and to suppress VSV replication. We propose that different mechanisms of translational initiation by VSV and poliovirus determine their sensitivity to stress induced by the inhibition of proteasomes. To our knowledge, this is the first study that connects the effect of stress induced by proteasome inhibition with the efficiency of viral infection

    The SHiP experiment at the proposed CERN SPS Beam Dump Facility

    Get PDF
    The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end

    Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity

    Get PDF

    Fast simulation of muons produced at the SHiP experiment using generative adversarial networks

    Get PDF
    This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of Script O(106). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution

    The experimental facility for the Search for Hidden Particles at the CERN SPS

    Get PDF
    The International School for Advanced Studies (SISSA) logo The International School for Advanced Studies (SISSA) logo The following article is OPEN ACCESS The experimental facility for the Search for Hidden Particles at the CERN SPS C. Ahdida44, R. Albanese14,a, A. Alexandrov14, A. Anokhina39, S. Aoki18, G. Arduini44, E. Atkin38, N. Azorskiy29, J.J. Back54, A. Bagulya32Show full author list Published 25 March 2019 ‱ © 2019 CERN Journal of Instrumentation, Volume 14, March 2019 Download Article PDF References Download PDF 543 Total downloads 7 7 total citations on Dimensions. Article has an altmetric score of 1 Turn on MathJax Share this article Share this content via email Share on Facebook Share on Twitter Share on Google+ Share on Mendeley Article information Abstract The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1–3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to Script O(10) GeV/c2 in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background
    • 

    corecore