403 research outputs found
Development of a genetic tool for product regulation in the diverse British pig breed market
<p>Abstract</p> <p>Background</p> <p>The application of DNA markers for the identification of biological samples from both human and non-human species is widespread and includes use in food authentication. In the food industry the financial incentive to substituting the true name of a food product with a higher value alternative is driving food fraud. This applies to British pork products where products derived from traditional pig breeds are of premium value. The objective of this study was to develop a genetic assay for regulatory authentication of traditional pig breed-labelled products in the porcine food industry in the United Kingdom.</p> <p>Results</p> <p>The dataset comprised of a comprehensive coverage of breed types present in Britain: 460 individuals from 7 traditional breeds, 5 commercial purebreds, 1 imported European breed and 1 imported Asian breed were genotyped using the PorcineSNP60 beadchip. Following breed-informative SNP selection, assignment power was calculated for increasing SNP panel size. A 96-plex assay created using the most informative SNPs revealed remarkably high genetic differentiation between the British pig breeds, with an average F<sub>ST</sub> of 0.54 and Bayesian clustering analysis also indicated that they were distinct homogenous populations. The posterior probability of assignment of any individual of a presumed origin actually originating from that breed given an alternative breed origin was > 99.5% in 174 out of 182 contrasts, at a test value of log(LR) > 0. Validation of the 96-plex assay using independent test samples of known origin was successful; a subsequent survey of market samples revealed a high level of breed label conformity.</p> <p>Conclusion</p> <p>The newly created 96-plex assay using selected markers from the PorcineSNP60 beadchip enables powerful assignment of samples to traditional breed origin and can effectively identify mislabelling, providing a highly effective tool for DNA analysis in food forensics.</p
A high density recombination map of the pig reveals a correlation between sex-specific recombination and GC content
<p>Abstract</p> <p>Background</p> <p>The availability of a high-density SNP genotyping chip and a reference genome sequence of the pig (<it>Sus scrofa</it>) enabled the construction of a high-density linkage map. A high-density linkage map is an essential tool for further fine-mapping of quantitative trait loci (QTL) for a variety of traits in the pig and for a better understanding of mechanisms underlying genome evolution.</p> <p>Results</p> <p>Four different pig pedigrees were genotyped using the Illumina PorcineSNP60 BeadChip. Recombination maps for the autosomes were computed for each individual pedigree using a common set of markers. The resulting genetic maps comprised 38,599 SNPs, including 928 SNPs not positioned on a chromosome in the current assembly of the pig genome (build 10.2). The total genetic length varied according to the pedigree, from 1797 to 2149 cM. Female maps were longer than male maps, with a notable exception for SSC1 where male maps are characterized by a higher recombination rate than females in the region between 91–250 Mb. The recombination rates varied among chromosomes and along individual chromosomes, regions with high recombination rates tending to cluster close to the chromosome ends, irrespective of the position of the centromere. Correlations between main sequence features and recombination rates were investigated and significant correlations were obtained for all the studied motifs. Regions characterized by high recombination rates were enriched for specific GC-rich sequence motifs as compared to low recombinant regions. These correlations were higher in females than in males, and females were found to be more recombinant than males at regions where the GC content was greater than 0.4.</p> <p>Conclusions</p> <p>The analysis of the recombination rate along the pig genome highlighted that the regions exhibiting higher levels of recombination tend to cluster around the ends of the chromosomes irrespective of the location of the centromere. Major sex-differences in recombination were observed: females had a higher recombination rate within GC-rich regions and exhibited a stronger correlation between recombination rates and specific sequence features.</p
Swings between rotation and accretion power in a millisecond binary pulsar
It is thought that neutron stars in low-mass binary systems can accrete
matter and angular momentum from the companion star and be spun-up to
millisecond rotational periods. During the accretion stage, the system is
called a low-mass X-ray binary, and bright X-ray emission is observed. When the
rate of mass transfer decreases in the later evolutionary stages, these
binaries host a radio millisecond pulsar whose emission is powered by the
neutron star's rotating magnetic field. This evolutionary model is supported by
the detection of millisecond X-ray pulsations from several accreting neutron
stars and also by the evidence for a past accretion disc in a rotation-powered
millisecond pulsar. It has been proposed that a rotation-powered pulsar may
temporarily switch on during periods of low mass inflow in some such systems.
Only indirect evidence for this transition has hitherto been observed. Here we
report observations of accretion-powered, millisecond X-ray pulsations from a
neutron star previously seen as a rotation-powered radio pulsar. Within a few
days after a month-long X-ray outburst, radio pulses were again detected. This
not only shows the evolutionary link between accretion and rotation-powered
millisecond pulsars, but also that some systems can swing between the two
states on very short timescales.Comment: 43 pages, 9 figures, 4 table. Published by Nature on 26 Sep 2013.
Includes Supplementary information. Minor differences with published version
may exis
An Anti-Glitch in a Magnetar
Magnetars are neutron stars showing dramatic X-ray and soft -ray
outbursting behaviour that is thought to be powered by intense internal
magnetic fields. Like conventional young neutron stars in the form of radio
pulsars, magnetars exhibit "glitches" during which angular momentum is believed
to be transferred between the solid outer crust and the superfluid component of
the inner crust. Hitherto, the several hundred observed glitches in radio
pulsars and magnetars have involved a sudden spin-up of the star, due
presumably to the interior superfluid rotating faster than the crust. Here we
report on X-ray timing observations of the magnetar 1E 2259+586 which we show
exhibited a clear "anti-glitch" -- a sudden spin down. We show that this event,
like some previous magnetar spin-up glitches, was accompanied by multiple X-ray
radiative changes and a significant spin-down rate change. This event, if of
origin internal to the star, is unpredicted in models of neutron star spin-down
and is suggestive of differential rotation in the neutron star, further
supporting the need for a rethinking of glitch theory for all neutron stars
Gravitational waves from single neutron stars: an advanced detector era survey
With the doors beginning to swing open on the new gravitational wave
astronomy, this review provides an up-to-date survey of the most important
physical mechanisms that could lead to emission of potentially detectable
gravitational radiation from isolated and accreting neutron stars. In
particular we discuss the gravitational wave-driven instability and
asteroseismology formalism of the f- and r-modes, the different ways that a
neutron star could form and sustain a non-axisymmetric quadrupolar "mountain"
deformation, the excitation of oscillations during magnetar flares and the
possible gravitational wave signature of pulsar glitches. We focus on progress
made in the recent years in each topic, make a fresh assessment of the
gravitational wave detectability of each mechanism and, finally, highlight key
problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and
Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor
corrections to match published versio
Strongly magnetized pulsars: explosive events and evolution
Well before the radio discovery of pulsars offered the first observational
confirmation for their existence (Hewish et al., 1968), it had been suggested
that neutron stars might be endowed with very strong magnetic fields of
-G (Hoyle et al., 1964; Pacini, 1967). It is because of their
magnetic fields that these otherwise small ed inert, cooling dead stars emit
radio pulses and shine in various part of the electromagnetic spectrum. But the
presence of a strong magnetic field has more subtle and sometimes dramatic
consequences: In the last decades of observations indeed, evidence mounted that
it is likely the magnetic field that makes of an isolated neutron star what it
is among the different observational manifestations in which they come. The
contribution of the magnetic field to the energy budget of the neutron star can
be comparable or even exceed the available kinetic energy. The most magnetised
neutron stars in particular, the magnetars, exhibit an amazing assortment of
explosive events, underlining the importance of their magnetic field in their
lives. In this chapter we review the recent observational and theoretical
achievements, which not only confirmed the importance of the magnetic field in
the evolution of neutron stars, but also provide a promising unification scheme
for the different observational manifestations in which they appear. We focus
on the role of their magnetic field as an energy source behind their persistent
emission, but also its critical role in explosive events.Comment: Review commissioned for publication in the White Book of
"NewCompStar" European COST Action MP1304, 43 pages, 8 figure
Evaluation of biospheric components in earth system models using modern and palaeo-observations: The state-of-the-art
PublishedJournal ArticleEarth system models (ESMs) are increasing in complexity by incorporating more processes than their predecessors, making them potentially important tools for studying the evolution of climate and associated biogeochemical cycles. However, their coupled behaviour has only recently been examined in any detail, and has yielded a very wide range of outcomes. For example, coupled climate-carbon cycle models that represent land-use change simulate total land carbon stores at 2100 that vary by as much as 600 Pg C, given the same emissions scenario. This large uncertainty is associated with differences in how key processes are simulated in different models, and illustrates the necessity of determining which models are most realistic using rigorous methods of model evaluation. Here we assess the state-of-the-art in evaluation of ESMs, with a particular emphasis on the simulation of the carbon cycle and associated biospheric processes. We examine some of the new advances and remaining uncertainties relating to (i) modern and palaeodata and (ii) metrics for evaluation. We note that the practice of averaging results from many models is unreliable and no substitute for proper evaluation of individual models. We discuss a range of strategies, such as the inclusion of pre-calibration, combined process-and system-level evaluation, and the use of emergent constraints, that can contribute to the development of more robust evaluation schemes. An increasingly data-rich environment offers more opportunities for model evaluation, but also presents a challenge. Improved knowledge of data uncertainties is still necessary to move the field of ESM evaluation away from a "beauty contest" towards the development of useful constraints on model outcomes. © 2013 Author(s).This paper emerged from the GREENCYCLESII
mini-conference “Evaluation of Earth system models using
modern and palaeo-observations” held at Clare College, Cambridge,
UK, in September 2012. We would like to thank the Marie
Curie FP7 Research and Training Network GREENCYCLESII for
providing funding which made this meeting possible. Research
leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7 2007–2013)
under grant agreement no. 238366. The work of C. D. Jones was
supported by the Joint DECC/Defra Met Office Hadley Centre
Climate Programme (GA01101). N. R. Edwards acknowledges
support from FP7 grant no. 265170 (ERMITAGE). N. Vázquez
Riveiros acknowledges support from the AXA Research Fund and
the Newton Trust
Accreting Millisecond X-Ray Pulsars
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories
without parallel in the study of extreme physics. In this chapter we review the
past fifteen years of discoveries in the field. We summarize the observations
of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength
observations that have been carried out since the discovery of the first AMXP
in 1998. We review accretion torque theory, the pulse formation process, and
how AMXP observations have changed our view on the interaction of plasma and
magnetic fields in strong gravity. We also explain how the AMXPs have deepened
our understanding of the thermonuclear burst process, in particular the
phenomenon of burst oscillations. We conclude with a discussion of the open
problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations
and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer;
[revision with literature updated, several typos removed, 1 new AMXP added
A gene expression atlas of the domestic pig
<p>Abstract</p> <p>Background</p> <p>This work describes the first genome-wide analysis of the transcriptional landscape of the pig. A new porcine Affymetrix expression array was designed in order to provide comprehensive coverage of the known pig transcriptome. The new array was used to generate a genome-wide expression atlas of pig tissues derived from 62 tissue/cell types. These data were subjected to network correlation analysis and clustering.</p> <p>Results</p> <p>The analysis presented here provides a detailed functional clustering of the pig transcriptome where transcripts are grouped according to their expression pattern, so one can infer the function of an uncharacterized gene from the company it keeps and the locations in which it is expressed. We describe the overall transcriptional signatures present in the tissue atlas, where possible assigning those signatures to specific cell populations or pathways. In particular, we discuss the expression signatures associated with the gastrointestinal tract, an organ that was sampled at 15 sites along its length and whose biology in the pig is similar to human. We identify sets of genes that define specialized cellular compartments and region-specific digestive functions. Finally, we performed a network analysis of the transcription factors expressed in the gastrointestinal tract and demonstrate how they sub-divide into functional groups that may control cellular gastrointestinal development.</p> <p>Conclusions</p> <p>As an important livestock animal with a physiology that is more similar than mouse to man, we provide a major new resource for understanding gene expression with respect to the known physiology of mammalian tissues and cells. The data and analyses are available on the websites <url>http://biogps.org and http://www.macrophages.com/pig-atlas</url>.</p
- …
