10,978 research outputs found
Preliminary evidence supports circulating microRNAs as prognostic biomarkers for type 2 diabetes.
Background:Circulating microRNAs are emerging as potential prognostic biomarkers for the development of type 2 diabetes. However, microRNAs are also associated with complications from impaired glucose metabolism (e.g. endothelial cell function). Prior studies have not evaluated for associations between trajectories of circulating microRNAs with trajectories of fasting blood glucose over time and the responses to behavioral interventions to reduce risk. This study performed longitudinal assessment of microRNAs and fasting blood glucose and identified relationships between microRNAs and behavioral risk reduction interventions. Methods:MicroRNAs (n = 353) were measured in subsets (n = 10, n = 8) of participants from previously completed clinical trials that studied behavioral risk reduction interventions. Fasting blood glucose trajectories were associated with changes in 45 microRNAs over 12 months. Results:Following a 3-month physical activity and dietary intervention compared with baseline, 13 microRNAs were differentially expressed. Seven microRNAs (i.e. miR-106b, miR-20b, miR-363, miR-486, miR-532, miR-92a and miR-93) were commonly identified between the two analyses. Conclusions:Further studies are needed to determine which microRNAs are prognostic biomarkers of risk for type 2 diabetes versus consequences of impaired glucose metabolism. Additional future directions of this research are to differentiate whether microRNAs are prognostic and/or diagnostic biomarkers for risk for type 2 diabetes and predictive biomarkers of responses to risk reduction interventions
Physical realization of coupled Hilbert-space mirrors for quantum-state engineering
Manipulation of superpositions of discrete quantum states has a mathematical
counterpart in the motion of a unit-length statevector in an N-dimensional
Hilbert space. Any such statevector motion can be regarded as a succession of
two-dimensional rotations. But the desired statevector change can also be
treated as a succession of reflections, the generalization of Householder
transformations. In multidimensional Hilbert space such reflection sequences
offer more efficient procedures for statevector manipulation than do sequences
of rotations. We here show how such reflections can be designed for a system
with two degenerate levels - a generalization of the traditional two-state atom
- that allows the construction of propagators for angular momentum states. We
use the Morris-Shore transformation to express the propagator in terms of
Morris-Shore basis states and Cayley-Klein parameters, which allows us to
connect properties of laser pulses to Hilbert-space motion. Under suitable
conditions on the couplings and the common detuning, the propagators within
each set of degenerate states represent products of generalized Householder
reflections, with orthogonal vectors. We propose physical realizations of this
novel geometrical object with resonant, near-resonant and far-off-resonant
laser pulses. We give several examples of implementations in real atoms or
molecules.Comment: 15 pages, 6 figure
The prevalence of atopic dermatitis beyond childhood: A systematic review and meta-analysis of longitudinal studies.
BACKGROUND: There are sparse and conflicting data regarding the long-term clinical course of atopic dermatitis (AD). Although often described as a childhood disease, newer population-based estimates suggest the prevalence of pediatric and adult disease may be similar. METHODS: Our objective was to determine whether there is a decline in the prevalence of AD in population-based cohorts of patients followed longitudinally beyond childhood. We conducted a systematic review and meta-analysis including studies assessing AD prevalence across 3 or more points in time. The primary outcome was weighted overall risk difference (percentage decrease in AD prevalence). RESULTS: Of 2080 references reviewed, 7 studies with 13 515 participants were included. Participants were assessed at 3-6 time points, ranging from age 3 months to 26 years. The percentage decrease in prevalence after age 12 was 1%, which was not significantly different from zero (95% confidence interval -2%-5%). Similar results were found with other age cut-offs. CONCLUSION: The prevalence of AD in longitudinal birth cohort studies is similar in childhood and adolescence/early adulthood
Angles in Fuzzy Disc and Angular Noncommutative Solitons
The fuzzy disc, introduced by the authors of Ref.[1], is a disc-shaped region
in a noncommutative plane, and is a fuzzy approximation of a commutative disc.
In this paper we show that one can introduce a concept of angles to the fuzzy
disc, by using the phase operator and phase states known in quantum optics. We
gave a description of a fuzzy disc in terms of operators and their commutation
relations, and studied properties of angular projection operators. A similar
construction for a fuzzy annulus is also given. As an application, we
constructed fan-shaped soliton solutions of a scalar field theory on a fuzzy
disc, which corresponds to a fan-shaped D-brane. We also applied this concept
to the theory of noncommutative gravity that we proposed in Ref.[2]. In
addition, possible connections to black hole microstates, holography and an
experimental test of noncommutativity by laser physics are suggested.Comment: 24 pages, 12 figures; v2: minor mistake corrected in Eq.(3.21), and
discussion adapted accordingly; v3: a further discussion on the algebra of
the fuzzy disc added in subsection 3.2; v4: discussions improved and typos
correcte
Cross modal perception of body size in domestic dogs (Canis familiaris)
While the perception of size-related acoustic variation in animal vocalisations is well documented, little attention has been given to how this information might be integrated with corresponding visual information. Using a cross-modal design, we tested the ability of domestic dogs to match growls resynthesised to be typical of either a large or a small dog to size- matched models. Subjects looked at the size-matched model significantly more often and for a significantly longer duration than at the incorrect model, showing that they have the ability to relate information about body size from the acoustic domain to the appropriate visual category. Our study suggests that the perceptual and cognitive mechanisms at the basis of size assessment in mammals have a multisensory nature, and calls for further investigations of the multimodal processing of size information across animal species
Recommended from our members
Detecting sulphate aerosol geoengineering with different methods
Sulphate aerosol injection has been widely discussed as a possible way to engineer future climate. Monitoring it would require detecting its effects amidst internal variability and in the presence of other external forcings. We investigate how the use of different detection methods and filtering techniques affects the detectability of sulphate aerosol geoengineering in annual-mean global-mean near-surface air temperature. This is done by assuming a future scenario that injects 5 Tg yr−1 of sulphur dioxide into the stratosphere and cross-comparing simulations from 5 climate models. 64% of the studied comparisons would require 25 years or more for detection when no filter and the multi-variate method that has been extensively used for attributing climate change are used, while 66% of the same comparisons would require fewer than 10 years for detection using a trend-based filter. This highlights the high sensitivity of sulphate aerosol geoengineering detectability to the choice of filter. With the same trend-based filter but a non-stationary method, 80% of the comparisons would require fewer than 10 years for detection. This does not imply sulphate aerosol geoengineering should be deployed, but suggests that both detection methods could be used for monitoring geoengineering in global, annual mean temperature should it be needed
Molecular Dynamics Simulations of Weak Detonations
Detonation of a three-dimensional reactive non-isotropic molecular crystal is
modeled using molecular dynamics simulations. The detonation process is
initiated by an impulse, followed by the creation of a stable fast reactive
shock wave. The terminal shock velocity is independent of the initiation
conditions. Further analysis shows supersonic propagation decoupled from the
dynamics of the decomposed material left behind the shock front. The dependence
of the shock velocity on crystal nonlinear compressibility resembles solitary
behavior. These properties categorize the phenomena as a weak detonation. The
dependence of the detonation wave on microscopic potential parameters was
investigated. An increase in detonation velocity with the reaction
exothermicity reaching a saturation value is observed. In all other respects
the model crystal exhibits typical properties of a molecular crystal.Comment: 38 pages, 20 figures. Submitted to Physical Review
Two-Particle-Self-Consistent Approach for the Hubbard Model
Even at weak to intermediate coupling, the Hubbard model poses a formidable
challenge. In two dimensions in particular, standard methods such as the Random
Phase Approximation are no longer valid since they predict a finite temperature
antiferromagnetic phase transition prohibited by the Mermin-Wagner theorem. The
Two-Particle-Self-Consistent (TPSC) approach satisfies that theorem as well as
particle conservation, the Pauli principle, the local moment and local charge
sum rules. The self-energy formula does not assume a Migdal theorem. There is
consistency between one- and two-particle quantities. Internal accuracy checks
allow one to test the limits of validity of TPSC. Here I present a pedagogical
review of TPSC along with a short summary of existing results and two case
studies: a) the opening of a pseudogap in two dimensions when the correlation
length is larger than the thermal de Broglie wavelength, and b) the conditions
for the appearance of d-wave superconductivity in the two-dimensional Hubbard
model.Comment: Chapter in "Theoretical methods for Strongly Correlated Systems",
Edited by A. Avella and F. Mancini, Springer Verlag, (2011) 55 pages.
Misprint in Eq.(23) corrected (thanks D. Bergeron
- …
