3,754 research outputs found
International Committee on Mental Health in Cystic Fibrosis: Cystic Fibrosis Foundation and European Cystic Fibrosis Society consensus statements for screening and treating depression and anxiety
Studies measuring psychological distress in individuals with cystic fibrosis (CF) have found high rates of both depression and anxiety. Psychological symptoms in both individuals with CF and parent caregivers have been associated with decreased lung function, lower body mass index, worse adherence, worse health-related quality of life, more frequent hospitalisations and increased healthcare costs. To identify and treat depression and anxiety in CF, the CF Foundation and the European CF Society invited a panel of experts, including physicians, psychologists, psychiatrists, nurses, social workers, a pharmacist, parents and an individual with CF, to develop consensus recommendations for clinical care. Over 18 months, this 22-member committee was divided into four workgroups: Screening; Psychological Interventions; Pharmacological Treatments and
Implementation and Future Research, and used the Population, Intervention, Comparison, Outcome methodology to develop questions for literature search and review. Searches were conducted in PubMed, PsychINFO, ScienceDirect, Google Scholar, Psychiatry
online and ABDATA by a methodologist at Dartmouth. The committee reviewed 344 articles, drafted statements and set an 80% acceptance for each recommendation statement as a consensus threshold prior to an anonymous voting process. Fifteen guideline recommendation statements for screening and treatment of depression and anxiety in individuals with CF and parent caregivers were finalised by vote. As these recommendations are implemented in CF centres internationally, the process of dissemination, implementation and resource provision should be closely monitored to assess barriers and concerns, validity and use
Hypothalamic actions of neuromedin U.
The central nervous system and gut peptide neuromedin U (NMU) inhibits feeding after intracerebroventricular injection. This study explored the hypothalamic actions of NMU on feeding and the hypothalamo-pituitary-adrenal axis. Intraparaventricular nucleus (intra-PVN) NMU dose-dependently inhibited food intake, with a minimum effective dose of 0.1 nmol and a robust effect at 0.3 nmol. Feeding inhibition was mapped by NMU injection into eight hypothalamic areas. NMU (0.3 nmol) inhibited food intake in the PVN (0-1 h, 59 ± 6.9% of the control value; P < 0.001) and arcuate nucleus (0-1 h, 76 ± 10.4% of the control value; P < 0.05). Intra-PVN NMU markedly increased grooming and locomotor behavior and dose-dependently increased plasma ACTH (0.3 nmol NMU, 24.8 ± 1.9 pg/ml; saline, 11.4 ± 1.0; P < 0.001) and corticosterone (0.3 nmol NMU, 275.4 ± 40.5 ng/ml; saline, 129.4 ± 25.0; P < 0.01). Using hypothalamic explants in vitro, NMU stimulated CRH (100 nM NMU, 5.9 ± 0.95 pmol/explant; basal, 3.8 ± 0.39; P < 0.01) and arginine vasopressin release (100 nM NMU, 124.5 ± 21.8 fmol/explant; basal, 74.5 ± 7.6; P < 0.01). Leptin stimulated NMU release (141.9 ± 20.4 fmol/explant; basal, 92.9 ± 9.4; P < 0.01). Thus, we describe a novel role for NMU in the PVN to stimulate the hypothalamo-pituitary-adrenal axis and locomotor and grooming behavior and to inhibit feeding
Quantum-inspired interferometry with chirped laser pulses
We introduce and implement an interferometric technique based on chirped
femtosecond laser pulses and nonlinear optics. The interference manifests as a
high-visibility (> 85%) phase-insensitive dip in the intensity of an optical
beam when the two interferometer arms are equal to within the coherence length
of the light. This signature is unique in classical interferometry, but is a
direct analogue to Hong-Ou-Mandel quantum interference. Our technique exhibits
all the metrological advantages of the quantum interferometer, but with signals
at least 10^7 times greater. In particular we demonstrate enhanced resolution,
robustness against loss, and automatic dispersion cancellation. Our
interferometer offers significant advantages over previous technologies, both
quantum and classical, in precision time delay measurements and biomedical
imaging.Comment: 6 pages, 4 figure
Ghrelin causes hyperphagia and obesity in rats.
Ghrelin, a circulating growth hormone–releasing pep-tide derived from the stomach, stimulates food intake. The lowest systemically effective orexigenic dose of ghrelin was investigated and the resulting plasma ghre-lin concentration was compared with that during fast-ing. The lowest dose of ghrelin that produced a significant stimulation of feeding after intraperitoneal injection was 1 nmol. The plasma ghrelin concentration after intraperitoneal injection of 1 nmol of ghrelin (2.83 0.13 pmol/ml at 60 min postinjection) was not significantly different from that occurring after a 24-h fast (2.79 0.32 pmol/ml). After microinjection into defined hypothalamic sites, ghrelin (30 pmol) stimu-lated food intake most markedly in the arcuate nucleus (Arc) (0–1 h food intake, 427 43 % of control; P <
Mindfulness-based stress reduction in Parkinson’s disease: a systematic review
Background:
Mindfulness based stress reduction (MBSR) is increasingly being used to improve outcomes such as stress and depression in a range of long-term conditions (LTCs). While systematic reviews on MBSR have taken place for a number of conditions there remains limited information on its impact on individuals with Parkinson’s disease (PD).
Methods:
Medline, Central, Embase, Amed, CINAHAL were searched in March 2016. These databases were searched using a combination of MeSH subject headings where available and keywords in the title and abstracts. We also searched the reference lists of related reviews. Study quality was assessed based on questions from the Cochrane Collaboration risk of bias tool.
Results:
Two interventions and three papers with a total of 66 participants were included. The interventions were undertaken in Belgium (n = 27) and the USA (n = 39). One study reported significantly increased grey matter density (GMD) in the brains of the MBSR group compared to the usual care group. Significant improvements were reported in one study for a number of outcomes including PD outcomes, depression, mindfulness, and quality of life indicators. Only one intervention was of reasonable quality and both interventions failed to control for potential confounders in the analysis. Adverse events and reasons for drop-outs were not reported. There was also no reporting on the costs/benefits of the intervention or how they affected health service utilisation.
Conclusion:
This systematic review found limited and inconclusive evidence of the effectiveness of MBSR for PD patients. Both of the included interventions claimed positive effects for PD patients but significant outcomes were often contradicted by other results. Further trials with larger sample sizes, control groups and longer follow-ups are needed before the evidence for MBSR in PD can be conclusively judged
Quantum nondemolition measurement of mechanical motion quanta
The fields of opto- and electromechanics have facilitated numerous advances
in the areas of precision measurement and sensing, ultimately driving the
studies of mechanical systems into the quantum regime. To date, however, the
quantization of the mechanical motion and the associated quantum jumps between
phonon states remains elusive. For optomechanical systems, the coupling to the
environment was shown to preclude the detection of the mechanical mode
occupation, unless strong single photon optomechanical coupling is achieved.
Here, we propose and analyse an electromechanical setup, which allows to
overcome this limitation and resolve the energy levels of a mechanical
oscillator. We find that the heating of the membrane, caused by the interaction
with the environment and unwanted couplings, can be suppressed for carefully
designed electromechanical systems. The results suggest that phonon number
measurement is within reach for modern electromechanical setups.Comment: 8 pages, 5 figures plus 24 pages, 11 figures supplemental materia
Recommended from our members
Search for intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network
Gravitational-wave astronomy has been firmly established with the detection of gravitational waves from the merger of ten stellar-mass binary black holes and a neutron star binary. This paper reports on the all-sky search for gravitational waves from intermediate mass black hole binaries in the first and second observing runs of the Advanced LIGO and Virgo network. The search uses three independent algorithms: two based on matched filtering of the data with waveform templates of gravitational-wave signals from compact binaries, and a third, model-independent algorithm that employs no signal model for the incoming signal. No intermediate mass black hole binary event is detected in this search. Consequently, we place upper limits on the merger rate density for a family of intermediate mass black hole binaries. In particular, we choose sources with total masses M=m1+m2ϵ[120,800] M and mass ratios q=m2/m1ϵ[0.1,1.0]. For the first time, this calculation is done using numerical relativity waveforms (which include higher modes) as models of the real emitted signal. We place a most stringent upper limit of 0.20 Gpc-3 yr-1 (in comoving units at the 90% confidence level) for equal-mass binaries with individual masses m1,2=100 M and dimensionless spins χ1,2=0.8 aligned with the orbital angular momentum of the binary. This improves by a factor of ∼5 that reported after Advanced LIGO's first observing run
Second language user support
Computer users rarely experience entirely trouble-free interaction. The natural variety ofindividuals ensures that no software systems yield constantly fluent interaction for allusers. In consequence, software designers often strive to ameliorate this situation bybuilding 'user support' into their systems. User support can take different forms but,conventionally, each aims to assist the needy end-user by means of facilities directly supporting the performance of certain operations, or through supply of information thatadvises the user on available system functionality.The present paper briefly characterises a range of user support facilities before describingone requirement in greater detail. This aspect considers the needs of users whose mother-tongue is not English, but who are obliged to use English-based information systems. Inthis context, 'helping the user' must reasonably extend beyond mere advice on systemoperation to selective elucidation of information content. We regard this move as alogical extension of the user support concept, by seeking to address specific interactionneeds in a target user population. An example of this approach is described through aninformation system, in the domain of civil engineering, for native Chinese speakers ofEnglish
Measurement-based quantum control of mechanical motion
Controlling a quantum system based on the observation of its dynamics is
inevitably complicated by the backaction of the measurement process. Efficient
measurements, however, maximize the amount of information gained per
disturbance incurred. Real-time feedback then enables both canceling the
measurement's backaction and controlling the evolution of the quantum state.
While such measurement-based quantum control has been demonstrated in the clean
settings of cavity and circuit quantum electrodynamics, its application to
motional degrees of freedom has remained elusive. Here we show
measurement-based quantum control of the motion of a millimetre-sized membrane
resonator. An optomechanical transducer resolves the zero-point motion of the
soft-clamped resonator in a fraction of its millisecond coherence time, with an
overall measurement efficiency close to unity. We use this position record to
feedback-cool a resonator mode to its quantum ground state (residual thermal
occupation n = 0.29 +- 0.03), 9 dB below the quantum backaction limit of
sideband cooling, and six orders of magnitude below the equilibrium occupation
of its thermal environment. This realizes a long-standing goal in the field,
and adds position and momentum to the degrees of freedom amenable to
measurement-based quantum control, with potential applications in quantum
information processing and gravitational wave detectors.Comment: New version with corrected detection efficiency as determined with a
NIST-calibrated photodiode, added references and revised structure. Main
conclusions are identical. 41 pages, 18 figure
Strong and Tunable Nonlinear Optomechanical Coupling in a Low-Loss System
A major goal in optomechanics is to observe and control quantum behavior in a
system consisting of a mechanical resonator coupled to an optical cavity. Work
towards this goal has focused on increasing the strength of the coupling
between the mechanical and optical degrees of freedom; however, the form of
this coupling is crucial in determining which phenomena can be observed in such
a system. Here we demonstrate that avoided crossings in the spectrum of an
optical cavity containing a flexible dielectric membrane allow us to realize
several different forms of the optomechanical coupling. These include cavity
detunings that are (to lowest order) linear, quadratic, or quartic in the
membrane's displacement, and a cavity finesse that is linear in (or independent
of) the membrane's displacement. All these couplings are realized in a single
device with extremely low optical loss and can be tuned over a wide range in
situ; in particular, we find that the quadratic coupling can be increased three
orders of magnitude beyond previous devices. As a result of these advances, the
device presented here should be capable of demonstrating the quantization of
the membrane's mechanical energy.Comment: 12 pages, 4 figures, 1 tabl
- …
