101 research outputs found

    The noise in gravitational-wave detectors and other classical-force measurements is not influenced by test-mass quantization

    Get PDF
    It is shown that photon shot noise and radiation-pressure back-action noise are the sole forms of quantum noise in interferometric gravitational wave detectors that operate near or below the standard quantum limit, if one filters the interferometer output appropriately. No additional noise arises from the test masses' initial quantum state or from reduction of the test-mass state due to measurement of the interferometer output or from the uncertainty principle associated with the test-mass state. Two features of interferometers are central to these conclusions: (i) The interferometer output (the photon number flux N(t) entering the final photodetector) commutes with itself at different times in the Heisenberg Picture, [N(t), N(t')] = 0, and thus can be regarded as classical. (ii) This number flux is linear in the test-mass initial position and momentum operators x_o and p_o, and those operators influence the measured photon flux N(t) in manners that can easily be removed by filtering -- e.g., in most interferometers, by discarding data near the test masses' 1 Hz swinging freqency. The test-mass operators x_o and p_o contained in the unfiltered output N(t) make a nonzero contribution to the commutator [N(t), N(t')]. That contribution is cancelled by a nonzero commutation of the photon shot noise and radiation-pressure noise, which also are contained in N(t). This cancellation of commutators is responsible for the fact that it is possible to derive an interferometer's standard quantum limit from test-mass considerations, and independently from photon-noise considerations. These conclusions are true for a far wider class of measurements than just gravitational-wave interferometers. To elucidate them, this paper presents a series of idealized thought experiments that are free from the complexities of real measuring systems.Comment: Submitted to Physical Review D; Revtex, no figures, prints to 14 pages. Second Revision 1 December 2002: minor rewording for clarity, especially in Sec. II.B.3; new footnote 3 and passages before Eq. (2.35) and at end of Sec. III.B.

    Replicability of simulation studies for the investigation of statistical methods: The RepliSims project

    Get PDF
    Results of simulation studies evaluating the performance of statistical methods can have a major impact on the way empirical research is implemented. However, so far there is limited evidence of the replicability of simulation studies. Eight highly cited statistical simulation studies were selected, and their replicability was assessed by teams of replicators with formal training in quantitative methodology. The teams used information in the original publications to write simulation code with the aim of replicating the results. The primary outcome was to determine the feasibility of replicability based on reported information in the original publications and supplementary materials. Replicasility varied greatly: some original studies provided detailed information leading to almost perfect replication of results, whereas other studies did not provide enough information to implement any of the reported simulations. Factors facilitating replication included availability of code, detailed reporting or visualization of data-generating procedures and methods, and replicator expertise. Replicability of statistical simulation studies was mainly impeded by lack of information and sustainability of information sources. We encourage researchers publishing simulation studies to transparently report all relevant implementation details either in the research paper itself or in easily accessible supplementary material and to make their simulation code publicly available using permanent links
    corecore