6 research outputs found

    Acid-evoked Ca2+ signalling in rat sensory neurones: effects of anoxia and aglycaemia

    Get PDF
    Ischaemia excites sensory neurones (generating pain) and promotes calcitonin gene-related peptide release from nerve endings. Acidosis is thought to play a key role in mediating excitation via the activation of proton-sensitive cation channels. In this study, we investigated the effects of acidosis upon Ca2+ signalling in sensory neurones from rat dorsal root ganglia. Both hypercapnic (pHo 6.8) and metabolic–hypercapnic (pHo 6.2) acidosis caused a biphasic increase in cytosolic calcium concentration ([Ca2+]i). This comprised a brief Ca2+ transient (half-time approximately 30Β s) caused by Ca2+ influx followed by a sustained rise in [Ca2+]i due to Ca2+ release from caffeine and cyclopiazonic acid-sensitive internal stores. Acid-evoked Ca2+ influx was unaffected by voltage-gated Ca2+-channel inhibition with nickel and acid sensing ion channel (ASIC) inhibition with amiloride but was blocked by inhibition of transient receptor potential vanilloid receptors (TRPV1) with (E)-3-(4-t-butylphenyl)-N-(2,3-dihydrobenzo[b][1,4] dioxin-6-yl)acrylamide (AMG 9810; 1Β ΞΌM) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl) tetrahydropryazine-1(2H)-carbox-amide (BCTC; 1Β ΞΌM). Combining acidosis with anoxia and aglycaemia increased the amplitude of both phases of Ca2+ elevation and prolonged the Ca2+ transient. The Ca2+ transient evoked by combined acidosis, aglycaemia and anoxia was also substantially blocked by AMG 9810 and BCTC and, to a lesser extent, by amiloride. In summary, the principle mechanisms mediating increase in [Ca2+]i in response to acidosis are a brief Ca2+ influx through TRPV1 followed by sustained Ca2+ release from internal stores. These effects are potentiated by anoxia and aglycaemia, conditions also prevalent in ischaemia. The effects of anoxia and aglycaemia are suggested to be largely due to the inhibition of Ca2+-clearance mechanisms and possible increase in the role of ASICs

    Activation of splanchnic and pelvic colonic afferents by bradykinin in mice

    No full text
    BackgroundLumbar splanchnic (LSN) and sacral pelvic (PN) nerves convey different mechanosensory information from the colon to the spinal cord. Here, we determined whether these pathways differ also in their chemosensitivity to bradykinin.MethodsUsing a novel in vitro mouse colon preparation, serosal afferents were recorded from the LSN and PN and distinguished based on their mechanosensitivity to von Frey filaments (70-4000 mg) and insensitivity to colonic stretch (1-5 g) or fine mucosal stroking (10 mg). Bradykinin was applied into a ring around mechanoreceptive fields.ResultsThe LSN and PN afferents had different dynamic responses to mechanical stimuli: PN afferents required lower intensity stimuli, evoked larger responses, and displayed more maintained responses than LSN afferents. Bradykinin (1 micromol L-1) excited 66% (27 of 41) of LSN afferents. Responses to probing were potentiated after bradykinin. The concentration-dependent (EC50: 0.16 micromol L-1) response was reversed by the B2-receptor antagonist HOE-140 (10 nmol L-)). Twelve bradykinin responsive afferents were mechanically insensitive. More LSN serosal afferents responded to bradykinin than PN afferents (11%, PConclusionsBradykinin potently stimulates most splanchnic serosal afferents via B2-receptors, but few pelvic afferents. Mechanically insensitive afferents recruited by bradykinin are exclusive to the LSN
    corecore