534 research outputs found
Ab initio molecular dynamics simulations of Aluminum solvation
The solvation of Al and its hydrolyzed species in water clusters has been
studied by means of ab initio molecular dynamics simulations. The hexa-hydrate
aluminum ion formed a stable complex in the finite temperature cluster
simulation of one aluminum ion and 16 waters. The average dipole moment of
strongly polarized hydrated water molecules in the first solvation shell of the
hexa-hydrate aluminum ion was found to be 5.02 Debye. The deprotonated
hexa-hydrate complex evolves into a tetra-coordinated aluminate ion with two
water molecules in the second solvation shell forming hydrogen bonds to the
hydroxyl groups in agreement with the observed coordination.Comment: 12 pages in Elsevier LaTeX, 5 figures in Postscript, 2 last figures
are in color, submitted to Chemical Physics Letter
Fredholm methods for billiard eigenfunctions in the coherent state representation
We obtain a semiclassical expression for the projector onto eigenfunctions by
means of the Fredholm theory. We express the projector in the coherent state
basis, thus obtaining the semiclassical Husimi representation of the stadium
eigenfunctions, which is written in terms of classical invariants: periodic
points, their monodromy matrices and Maslov indices.Comment: 12 pages, 10 figures. Submitted to Phys. Rev. E. Comments or
questions to [email protected]
Long-lived oscillons from asymmetric bubbles
The possibility that extremely long-lived, time-dependent, and localized
field configurations (``oscillons'') arise during the collapse of asymmetrical
bubbles in 2+1 dimensional phi^4 models is investigated. It is found that
oscillons can develop from a large spectrum of elliptically deformed bubbles.
Moreover, we provide numerical evidence that such oscillons are: a) circularly
symmetric; and b) linearly stable against small arbitrary radial and angular
perturbations. The latter is based on a dynamical approach designed to
investigate the stability of nonintegrable time-dependent configurations that
is capable of probing slowly-growing instabilities not seen through the usual
``spectral'' method.Comment: RevTeX 4, 9 pages, 11 figures. Revised version with a new approach to
stability. Accepted to Phys. Rev.
Universality of the Lyapunov regime for the Loschmidt echo
The Loschmidt echo (LE) is a magnitude that measures the sensitivity of
quantum dynamics to perturbations in the Hamiltonian. For a certain regime of
the parameters, the LE decays exponentially with a rate given by the Lyapunov
exponent of the underlying classically chaotic system. We develop a
semiclassical theory, supported by numerical results in a Lorentz gas model,
which allows us to establish and characterize the universality of this Lyapunov
regime. In particular, the universality is evidenced by the semiclassical limit
of the Fermi wavelength going to zero, the behavior for times longer than
Ehrenfest time, the insensitivity with respect to the form of the perturbation
and the behavior of individual (non-averaged) initial conditions. Finally, by
elaborating a semiclassical approximation to the Wigner function, we are able
to distinguish between classical and quantum origin for the different terms of
the LE. This approach renders an understanding for the persistence of the
Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our
results in terms of the quantum--classical transition.Comment: 33 pages, 17 figures, uses Revtex
Holographic dark energy in a non-flat universe with Granda-Oliveros cut-off
Motivated by Granda and Oliveros (GO) model, we generalize their work to the
non-flat case. We obtain the evolution of the dark energy density, the
deceleration and the equation of state parameters for the holographic dark
energy model in a non-flat universe with GO cut-off. In the limiting case of a
flat universe, i.e. , all results given in GO model are obtained.Comment: 11 pages, 5 figure
Biological treatments in allergy: Prescribing patterns and management of hypersensitivity reactions
Clinical Communication
The exposure of the hybrid detector of the Pierre Auger Observatory
The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays.
It consists of a surface array to measure secondary particles at ground level
and a fluorescence detector to measure the development of air showers in the
atmosphere above the array. The "hybrid" detection mode combines the
information from the two subsystems. We describe the determination of the
hybrid exposure for events observed by the fluorescence telescopes in
coincidence with at least one water-Cherenkov detector of the surface array. A
detailed knowledge of the time dependence of the detection operations is
crucial for an accurate evaluation of the exposure. We discuss the relevance of
monitoring data collected during operations, such as the status of the
fluorescence detector, background light and atmospheric conditions, that are
used in both simulation and reconstruction.Comment: Paper accepted by Astroparticle Physic
- …