18,727 research outputs found

    A percolation system with extremely long range connections and node dilution

    Get PDF
    We study the very long-range bond-percolation problem on a linear chain with both sites and bonds dilution. Very long range means that the probability pijp_{ij} for a connection between two occupied sites i,ji,j at a distance rijr_{ij} decays as a power law, i.e. pij=ρ/[rijαN1α]p_{ij} = \rho/[r_{ij}^\alpha N^{1-\alpha}] when 0α<1 0 \le \alpha < 1, and pij=ρ/[rijln(N)]p_{ij} = \rho/[r_{ij} \ln(N)] when α=1\alpha = 1. Site dilution means that the occupancy probability of a site is 0<ps10 < p_s \le 1. The behavior of this model results from the competition between long-range connectivity, which enhances the percolation, and site dilution, which weakens percolation. The case α=0\alpha=0 with ps=1p_s =1 is well-known, being the exactly solvable mean-field model. The percolation order parameter PP_\infty is investigated numerically for different values of α\alpha, psp_s and ρ\rho. We show that in the ranges 0α1 0 \le \alpha \le 1 and 0<ps10 < p_s \le 1 the percolation order parameter PP_\infty depends only on the average connectivity γ\gamma of sites, which can be explicitly computed in terms of the three parameters α\alpha, psp_s and ρ\rho

    Physical properties of the Schur complement of local covariance matrices

    Get PDF
    General properties of global covariance matrices representing bipartite Gaussian states can be decomposed into properties of local covariance matrices and their Schur complements. We demonstrate that given a bipartite Gaussian state ρ12\rho_{12} described by a 4×44\times 4 covariance matrix \textbf{V}, the Schur complement of a local covariance submatrix V1\textbf{V}_1 of it can be interpreted as a new covariance matrix representing a Gaussian operator of party 1 conditioned to local parity measurements on party 2. The connection with a partial parity measurement over a bipartite quantum state and the determination of the reduced Wigner function is given and an operational process of parity measurement is developed. Generalization of this procedure to a nn-partite Gaussian state is given and it is demonstrated that the n1n-1 system state conditioned to a partial parity projection is given by a covariance matrix such as its 2×22 \times 2 block elements are Schur complements of special local matrices.Comment: 10 pages. Replaced with final published versio

    Spin-glass behaviour on random lattices

    Get PDF
    The ground-state phase diagram of an Ising spin-glass model on a random graph with an arbitrary fraction ww of ferromagnetic interactions is analysed in the presence of an external field. Using the replica method, and performing an analysis of stability of the replica-symmetric solution, it is shown that w=1/2w=1/2, correponding to an unbiased spin glass, is a singular point in the phase diagram, separating a region with a spin-glass phase (w<1/2w<1/2) from a region with spin-glass, ferromagnetic, mixed, and paramagnetic phases (w>1/2w>1/2)

    Replica-symmetric solutions of a dilute Ising ferromagnet in a random field

    Full text link
    We use the replica method in order to obtain an expression for the variational free energy of an Ising ferromagnet on a Viana-Bray lattice in the presence of random external fields. Introducing a global order parameter, in the replica-symmetric context, the problem is reduced to the analysis of the solutions of a nonlinear integral equation. At zero temperature, and under some restrictions on the form of the random fields, we are able to perform a detailed analysis of stability of the replica-symmetric solutions. In contrast to the behaviour of the Sherrington-Kirkpatrick model for a spin glass in a uniform field, the paramagnetic solution is fully stable in a sufficiently large random field

    Scaling in a continuous time model for biological aging

    Full text link
    In this paper we consider a generalization to the asexual version of the Penna model for biological aging, where we take a continuous time limit. The genotype associated to each individual is an interval of real numbers over which Dirac δ\delta--functions are defined, representing genetically programmed diseases to be switched on at defined ages of the individual life. We discuss two different continuous limits for the evolution equation and two different mutation protocols, to be implemented during reproduction. Exact stationary solutions are obtained and scaling properties are discussed.Comment: 10 pages, 6 figure

    Alternate islands of multiple isochronous chains in wave-particle interactions

    Full text link
    We analyze the dynamics of a relativistic particle moving in a uniform magnetic field and perturbed by a standing electrostatic wave. We show that a pulsed wave produces an infinite number of perturbative terms with the same winding number, which may generate islands in the same region of phase space. As a consequence, the number of isochronous island chains varies as a function of the wave parameters. We observe that in all the resonances, the number of chains is related to the amplitude of the various resonant terms. We determine analytically the position of the periodic points and the number of island chains as a function of the wave number and wave period. Such information is very important when one is concerned with regular particle acceleration, since it is necessary to adjust the initial conditions of the particle to obtain the maximum acceleration.Comment: Submitte
    corecore