11 research outputs found

    Modélisation de l'aléa tsunamis et des résonances côtières en France

    No full text
    The objective of this thesis is to improve the knowledge of tsunamis, hazard and coastal resonance in France. In the first part, we outlined the theory of free oscillations and tsunami modeling using long wave and Boussinesq approximations in a finite difference code. All these elements have been compared and validated during benchmarks. We developed a numerical code solving the hydrodynamic equations in the Boussinesq approximation. The second part is a set of applications in the Pacific Ocean and along the French coast. We studied different events produced in the Pacific Ocean. A detailed study of the tsunami generated by the Maule earthquake (Mw 8.8 February 28, 2010) is made in both in the near (at the Chilean coast) and far field (on DART and in French Polynesia). We compare the tsunami generated by different seismological sources of this event. We find that a simple source can reproduce the far-field observations. Along the Chilean coast, we study the large scale free oscillation generated by this event. Using data coming from different types of instrument (tide gauge, inclinometer), we demonstrate that these oscillations are generated by trapping waves between the trench and the coast. Because of various effects generated by tsunamis in the bays of French Polynesia depending on the earthquake location, a detailed study on resonance modes of the Marquesas was made containing a discussion of the dependence of the resonance on the azimuthal position of the source. Finally, a discussion of the tsunami hazard in metropolitan France was made. Due to a recent event (Boumerdes-Zemmouri, 2003), the tsunami risk on the Mediterranean coast is real. The study of additional events allows us to constrain better the risk. Less known, the tsunami risk on the French Atlantic coast was investigated by seeking past records of tsunamis. We validated the numerical simulations performed for the sources of the XX th century, leading to the first analysis of the impacts of tsunamis generated in the area Gibraltar--Azores on the French Atlantic coast.L'objectif de cette thèse est d'approfondir la connaissance de l'aléa tsunami et des résonances côtières en France. Dans une première partie, nous avons exposé les différents éléments de modélisation des résonances et des tsunamis dans l'approximation en ondes longues et de Boussinesq avec la technique des différences finies. Tous ces éléments ont été comparés et validés lors de benchmarks. Un code résolvant les équations de la dynamique des fluides dans l'approximation de Boussinesq a été développé et validé. La seconde partie a consisté en un ensemble d'applications. Dans un premier temps, nous avons étudié différents évènements qui se sont produits dans l'océan Pacifique. Une étude détaillée du tsunami généré par le séisme de Maule (Mw8.8 28 février 2010) est faite en champ proche (au niveau de la côte chilienne) comme en champ lointain (sur des bouées au large comme en Polynésie française). Une comparaison des différentes sources disponibles a été effectuée. Nous en avons conclu qu'une source unitaire peut être suffisante pour reproduire les données en champ lointain. En champ proche, nous nous sommes intéressés au phénomène de résonances à grandes échelles. En utilisant les données provenant de différents instruments (marégraphiques, inclinométriques), nous avons mis en évidence le piègeage d'ondes de tsunami entre la fosse de subduction et la côte chilienne. Du fait des nombreuses sources de tsunami possible montrant des effets variés dans les différentes baies de la Polynésie française, une étude détaillée des modes de résonance de l'archipel des Marquises a été effectuée contenant une discussion sur la dépendance azimutale entre la position de la source et l'excitation des différentes résonances. Pour terminer, une discussion sur l'aléa tsunami en France métropolitaine a été effectuée. Suite à l'évènement récent de Boumerdès-Zemmouri (2003), le risque tsunami sur la côte méditerranéenne est connu. L'étude d'évènements supplémentaires permet de mieux contraindre le risque. Moins connu, le risque tsunami sur la côte Atlantique française a été étudié par la recherche d'enregistrements passés, afin de valider les simulations numériques effectuées concernant des sources du XXe siècle. Ces modélisations permettent ainsi d'avoir une première analyse de l'impact de tsunamis générés dans la zone Gibraltar--Açores sur les côtes françaises

    Modélisation de l'aléa tsunamis et des résonances côtières en France

    No full text
    PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF

    Observation and modeling of the seismic seiches triggered in the Gulf of Corinth (Greece) by the 2011 M w 9.0 Tohoku earthquake

    No full text
    International audienceThe study reports an unusual water level rise in the Gulf of Corinth, central Greece, during the passing of theseismic waves of the remote 2011 Mw 9.0 Tohoku earthquake. The seismic seiches were recorded by a tide-gaugelocated in the marina of the island of Trizonia, in the western side of the gulf. The cross-analysis between theground motion and the water level changes shows that seiching was initiated by the arrival of the earlier S-wavesand then enhanced by the surface waves. The seiching concerns five domains with periods ranging from minuteto about 7 min and with water level changes of a few millimeters to a few centimeters. The main seiching periodis about 5–7 min and the related water level has a maximum trough-to-peak amplitude of about 6–8 cm.Numerical simulation of the seismic seiches, based on the shallow water equations, allows us to model reasonablywell the amplitude of the seiches for most of the period domains, excepted those for the main seichingperiod at 7 min, which are underestimated by a factor of about 2–3. The largest bathymetric structures of thegulf to be excited in a seiche mode, with eigenperiods of hundreds of seconds, are a few kilometers in size

    Three-dimensional numerical modeling of tsunami-related internal gravity waves in the Hawaiian atmosphere

    Get PDF
    International audienceThe tremendous tsunami following the 2011 Tohoku Earthquake produced internal gravity waves (IGWs) in the neutral atmosphere and large disturbances in the overlying ionospheric plasma while propagating through the Pacific ocean. To corroborate the tsunamigenic hypothesis of these perturbations, we use a 3D numerical modeling of the ocean-atmosphere coupling, to reproduce the tsunami signature observed in the airglow by the imager located in Hawaii and clearly showing the shape of the modeled IGW. The agreement between data and synthetics not only supports the interpretation of the tsunami-related-IGW behavior, but strongly shows that atmospheric and ionospheric remote sensing can provide new tools for oceanic monitoring and tsunami detection

    The Tsunami Triggered by the 21 May 2003 Boumerdès-Zemmouri (Algeria) Earthquake: Field Investigations on the French Mediterranean Coast and Tsunami Modelling

    Get PDF
    International audienceA field survey was organized on the French Mediterranean coasts to investigate the effects of the tsunami induced by the 21 May 2003 Boumerdès-Zemmouri (Algeria) earthquake (Mw=6.9). The results show that eight harbours were affected by important sea level disturbances that caused material loss. Unfortunately, the low sampling rate of the French tide gage records (10 min) does not allow for a proper evaluation of the tsunami wave amplitudes since these amplitudes were probably underestimated in the harbours where these sensors are installed. The survey brings to light regional and local contrasts among the harbours' hydrological responses to the tsunami.To better understand these contrasts, a numerical simulation of the sea level elevations induced by the tsunami was conducted. The simulation showed a certain correlation between the field results and the wave amplification along the coast; however it underestimated the observed phenomena. Another simulation was then conducted using high resolution bathymetric grids (space step of 3 m) centred more specifically on 3 neighbouring harbours, however, again the simulation results did not match the amplitudes recorded through the observations. In order to better understand the wave amplification mechanisms inside each grid, a Gaussian signal was virtually broadcasted from the source to the harbours. Virtual sensors identified the periods which are stimulated – or not – by the arrival of the signal in each grid. Comparing these periods with those previously recorded emphasizes the proper period of each waterbody.This paper evaluates the limitations of such a study, focusing specifically on (1) the importance of having accurate and precise data about the source (the lack of information about the signal amplitude leads to an underestimation of the tsunami, thus reproducing only a fourth to a third of the observed phenomenon), (2) the need for networked tide gages with high resolution records and short sampling rates, and (3) the importance of conducting field studies immediately after a tsunami occurs

    Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011

    Get PDF
    International audienceAlthough only centimeters in amplitude over the open ocean, tsunamis can generate appreciable wave amplitudes in the upper atmosphere, including the naturally occurring chemiluminescent airglow layers, due to the exponential decrease in density with altitude. Here, we present the first observation of the airglow tsunami signature, resulting from the 11 March 2011 Tohoku earthquake off the eastern coast of Japan. These images are taken using a wide‐angle camera system located at the top of the Haleakala Volcano on Maui, Hawaii. They are correlated with GPS measurements of the total electron content from Hawaii GPS stations and the Jason‐1 satellite. We find waves propagating in the airglow layer from the direction of the earthquake epicenter with a velocity that matches that of the ocean tsunami. The first ionospheric signature precedes the modeled ocean tsunami generated by the main shock by approximately one hour. These results demonstrate the utility of monitoring the Earth's airglow layers for tsunami detection and early warning
    corecore