7 research outputs found

    SYNERGISM BETWEEN PROBIOTICS AND HERBS TO MANAGE TYPE 2 DIABETES IN RATS

    Get PDF
    Objective: This study aims to explore the adjuvant effect of multi-strain probiotics with either saffron, cardamom, ginger, or cinnamon herbs to achieve synergistic management for controlling type 2 diabetes (T2D). Methods: Eighty-eight adult male, Wistar rats were used. Eight rats were kept as healthy control. Eighty rats were used to induce type 2 diabetic rats (T2DR) and were randomly assigned to ten groups. One group was an offer to 0.2 ml multi-strain probiotics orally. The rest of T2DR were gavage with 100 mg/kg aqueous extract of saffron, cardamom, ginger, or cinnamon without or with 0.2 ml multi-strain probiotics orally. Bodyweight gain (BWG), and feed efficiency ratio (FER) were recorded. Determination of oral glucose tolerance test (OGTT), serum insulin, C-peptide, HDL, LDL, HDL/total cholesterol ratio were performed. Serum antioxidant activity, Th1and Th2 cytokines and histopathology of the pancreas were done. Results: Comparable with T2DR, solely multi-strain probiotics or with herbs caused a significant reduction in BWG (P<0.05). Groups fed saffron, cardamom, and ginger and enriched with multi-strain probiotic showed significant improvement in OGTT, serum insulin, C-peptide and lipid abnormalities (P<0.05) compared to T2DR. Besides, they had antioxidant and anti-inflammatory effects. The group received ginger alone exerted anti-hyperglycemia and anti-inflammatory effects. However, cinnamon had a moderate anti-diabetic effect and solely probiotics did not show a significant benefit for all parameters except BWG. Conclusion: Cardamom, saffron, and ginger enriched with multi-strain probiotics achieve a synergistic relationship for managing T2D. This finding exhibits a possible new hypothesis to manage diabetes that needs further study

    <i>Nigella sativa</i>-Floral Honey and Multi-Floral Honey versus <i>Nigella sativa</i> Oil against Testicular Degeneration Rat Model: The Possible Protective Mechanisms

    No full text
    The male reproductive function, particularly the testes, and the related hormones are sensitive to various xenobiotics. This work aimed for the first time to assess Nigella sativa floral honey (NS floral honey) and multi-floral honey (M-floral honey) versus Nigella sativa oil (NS oil) against rat testicular degeneration induced with azathioprine (AZA). A total of 40 male Wister rats were assigned into 5 groups: (1) control, (2) 15 mg/kg of AZA, (3) AZA + 1.4 mL/kg of M-floral honey, (4) AZA + 1.4 mL/kg of NS floral honey, and (5) AZA + 500 mg/kg of NA oil. Total testosterone (TT), free testosterone (FT), free androgen index (FAI), gonadotrophins, sex-hormone-binding globulin (SHBG), apoptosis markers, and redox status were assessed to clarify the possible protective mechanisms. Pituitary–testicular axis disruption, apoptosis markers, poor redox status, and sperm quality (count, viability, and motility) were set with AZA. Serum TT, SHBG, and absolute and relative testis weight were significantly restored in the NS oil and NS floral honey groups. Meanwhile, the NS oil group exhibited a significant elevation in FT and FAI. Serum gonadotrophins increased significantly in the NS floral honey (p p p p < 0.05). M-floral honey did not show reliable results. Although NS floral honey could protect against testicular damage, it did not upgrade to the level of improvement achieved with NS oil. We claim that further clinical studies are essential for focusing on the quality and quantity of bioactive constituents

    Phenolics and Volatile Compounds of Fennel (<i>Foeniculum vulgare</i>) Seeds and Their Sprouts Prevent Oxidative DNA Damage and Ameliorates CCl<sub>4</sub>-Induced Hepatotoxicity and Oxidative Stress in Rats

    No full text
    Researchers recently focused on studying the nutritional and functional qualities of sprouts generated from seeds. The current study investigated the total phenolic content (TPC), total flavonoids (TF), total flavonols (TFL), antioxidant activity (AOA), specific phenolic acids, and volatile chemicals in fennel seeds (FS) and fennel seed sprouts (FSS). The oxidative DNA damage prevention activity of selected FS and FSS extracts against DNA was examined. Consequently, the antioxidative stress potential of FS and FSS extracts at 300 and 600 mg kg−1 on CCl4-induced hepatotoxicity and oxidative stress in rats weas investigated. The liver’s functions and oxidative stress biomarkers in rat blood were examined. FSS exhibited rich phytochemical content such as TPC, TF, TFL, and AOA with altered phenolics and volatiles. HPLC identified nineteen compounds of phenolic acids and their derivatives in FS. Thirteen phenolics and six flavonoids were predominantly identified as Vanillic acid and Kaempferol, respectively. GC-MS analysis identified fifty and fifty-one components in FS and FSS, respectively. The predominant component was Benzene, [1-(2-propenyloxy)-3-butenyl] (trans-Anethole) (38.41%), followed by trans-Anethole (Benzene, 1-methoxy-4-(2-propenyl)) (23.65%), Fenchone (11.18%), and 1,7-Octadiene, 2-methyl-6-methylene- Cyclohexene (7.17%). Interestingly, α-Pinene, Fenchone, trans-Anethole (Benzene, 1-methoxy-4-(2-propenyl)), 4-Methoxybenzaldehyde (4-Anisaldehyde), Benzeneacetic acid, α-hydroxy-4-methoxy, and Nonacosane contents were increased. While Dillapiole, 7-Octadecenoic acid, and methyl ester were newly identified and quantified in FSS. The oxidative DNA damage prevention capability of FSS and FS extracts indicated remarkable DNA protection. Administrating FS and FSS extracts at 300 and 600 mg kg−1 ameliorated AST, ALT, and ALP, as well as GSH, CAT, MDA, and SOD, in a dose-dependent manner. The most efficient treatment of FS or FSS was using a dose of 600 mg Kg−1, which recorded an improvement rate of 20.77 and 24.17, 20.36 and 24.92, and 37.49 and 37.90% for ALT, AST, and ALP, respectively. While an improvement rate of 40.08 and 37.87%, 37.17 and 46.52%, 114.56 and 154.13%, and 66.05 and 69.69% for GSH, DMA, CAT, and SOD compared to the CCl4-group, respectively. The observed protection is associated with increased phenolics and volatiles in F. vulgare. Therefore, FS and FSS are recommended as functional foods with bioactive functionality, health-promoting properties, and desired prevention capabilities that may help prevent oxidative stress-related diseases

    Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, and Its Association with Developing Obesity and Diabetes Mellitus: A Narrative Review

    No full text
    Bisphenol A, a well-known endocrine-disrupting chemical, has been replaced with its analogs bisphenol S (BPS) and bisphenol F (BPF) over the last decade due to health concerns. BPS and BPF are present in relatively high concentrations in different products, such as food products, personal care products, and sales receipts. Both BPS and BPF have similar structural and chemical properties to BPA; therefore, considerable scientific efforts have investigated the safety of their exposure. In this review, we summarize the findings of relevant epidemiological studies investigating the association between urinary concentrations of BPS and/or BPF with the incidence of obesity or diabetes. The results showed that BPS and BPF were detected in many urinary samples at median concentrations ranging from 0.03 to 0.4 &micro;g&middot;L&minus;1. At this exposure level, BPS median urinary concentrations (0.4 &micro;g&middot;L&minus;1) were associated with the development of obesity. At a lower exposure level (0.1&ndash;0.03 &micro;g&middot;L&minus;1), two studies showed an association with developing diabetes. For BPF exposure, only one study showed an association with obesity. However, most of the reported studies only assessed BPS exposure levels. Furthermore, we also summarize the findings of experimental studies in vivo and in vitro regarding our aim; results support the possible obesogenic effects/metabolic disorders mediated by BPS and/or BPF exposure. Unexpectedly, BPS may promote worse obesogenic effects than BPA. In addition, the possible mode of action underlying the obesogenic effects of BPS might be attributed to various pathophysiological mechanisms, including estrogenic or androgenic activities, alterations in the gene expression of critical adipogenesis-related markers, and induction of oxidative stress and an inflammatory state. Furthermore, susceptibility to the adverse effects of BPS may be altered by sex differences according to the results of both epidemiological and experimental studies. However, the possible mode of action underlying these sex differences is still unclear. In conclusion, exposure to BPS or BPF may promote the development of obesity and diabetes. Future approaches are highly needed to assess the safety of BPS and BPF regarding their potential effects in promoting metabolic disturbances. Other studies in different populations and settings are highly suggested

    Utilization of Active Edible Films (Chitosan, Chitosan Nanoparticle, and CaCl2) for Enhancing the Quality Properties and the Shelf Life of Date Palm Fruits (Barhi Cultivar) during Cold Storage

    No full text
    Interest in edible coatings applications has progressively developed towards improving the quality and shelf life of climacteric fruits. This study aimed to investigate the influence of pre-harvest treatments (chitosan, chitosan nanoparticle, and CaCl2) on the physicochemical and quality attributes of Barhi date palm fruits during storage periods. Different pre-harvest treatments (control, chitosan 1, 2, and 3 g/L, CaCl2 1, 2, and 3 g/L, nano-chitosan 1, 2, and 3 cm3 /L) were applied. The results showed that all treatments were effective for enhancing the fruit quality, with increasing total soluble solids and total sugars, decreasing weight loss, discarded total acidity, and total soluble tannins compared to the control treatment. Additionally, the results revealed that the highest percentage of TSS was obtained in control fruits (35.78%). Meanwhile, the lowest mean values were obtained from chitosan nanoparticle at 3 cm3/L (33.91%). Treatments with chitosan nanoparticle at 3 cm3/L and CaCl2 at 3 g/L gave the statistically highest values of total tannins (0.225 and 0.220, respectively). The optimal treatment involved spraying the fruit with 3 cm3/L of nano-chitosan or 3 g/L of CaCl2 to increase the fruit quality and the shelf life of Barhi dates. The results indicated that weight loss was negatively linked with the moisture content and firmness, while decay had a strong positive relationship with the Rutab index and a negative correlation with the moisture content. Furthermore, the Rutab index was negatively associated with the total tannins and total chlorophyll
    corecore